首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
非一致激励下大跨度铁路斜拉桥地震响应规律   总被引:1,自引:0,他引:1  
以一座主跨228 m的铁路钢桁梁斜拉桥为工程背景,采用有限元软件SAP2000建立了基于大质量法的动力分析模型,根据实际工程场地条件从NGA-West2数据库中选取了7条地震动记录作为地震激励对结构进行非一致激励分析,探讨桥梁结构地震响应与地震波到达两主塔时差(相位差)之间的内在联系。结果表明:大跨度铁路斜拉桥在非一致激励下塔顶位移响应峰值与墩底弯矩响应峰值均随相位差呈周期性变化,且变化周期与结构一阶自振周期基本一致;工程结构设计中可通过调整桥梁跨径与结构自振周期,使相位差接近结构一阶自振周期的(2n+1)/2倍(n为整数)以降低非一致激励下结构地震响应;对于大跨度空间结构抗震设计,考虑行波效应的影响十分必要,应进行相位差为一阶自振周期整数倍的非一致激励分析。  相似文献   

2.
采用SAP2000建立了基于大质量法的动力分析模型,选取了4条NGA-West2数据库中与实际工程场地条件类似的地震波通过调幅后作为输入地震动,研究了行波效应对大跨度铁路劲性骨架混凝土拱桥地震响应的影响规律。研究结果表明:大跨度铁路劲性骨架混凝土拱桥在非一致激励下交界墩伸缩缝位移和主拱拱脚及主拱L/4处弯矩随相位差的变化具有周期性,且变化周期与结构1阶纵向自振周期基本一致,在相位差为结构1阶纵向自振周期的2n倍(n为整数)时结构响应处于峰值,在(2n+1)/2时结构响应处于谷值;跨中伸缩缝位移、拱顶轴力在非一致激励下分别为一致激励下的50~150倍,100~300倍;由于行波效应加剧了结构地震响应,在进行大跨度劲性骨架混凝土拱桥抗震设计时应考虑行波效应对结构关键部位的影响。  相似文献   

3.
基于多自由度空间结构体系地震响应分析的基本理论,利用ANSYS建立空间有限元模型,采用动力时程分析法分析一座大跨度连续钢桁架柔性拱桥在一致激励不同地震工况作用下的空间地震响应。研究结果表明:一致激励作用下,拱肋轴力、主桁弯矩峰值均出现在拱脚和边墩附近,拱肋横向位移峰值出现在每跨拱顶截面,纵向位移峰值沿桥长变化平缓;横向激励对横向位移影响大,对纵向位移影响小,纵向激励对纵向位移影响较大,对横向位移影响较小,竖向激励对水平位移影响较小;地震波组合输入对结构内力影响较单向输入大。建议在大跨度连续钢桁架柔性拱桥抗震设计中充分考虑地震空间特性,提高桥梁横向刚度,优化拱脚、边墩附近结构设计。  相似文献   

4.
高速铁路南京大胜关长江大桥地震响应分析   总被引:1,自引:0,他引:1  
采用大型通用有限元软件ANSYS,建立南京大胜关长江大桥主跨的连续钢桁架拱桥的有限元模型,运用反应谱分析法对全桥结构进行地震响应分析.选用经过加速度幅值调整的El-Centro地震波作为输入地震波,进行大跨度连续钢桁架拱桥一致激励下以及4种不同波速地震行波作用下的全桥结构内力和位移时程响应分析.分析结果表明:南京大胜关桥的整体结构较柔,采用反应谱法计算地震波作用下的桥梁地震响应和采用时程分析法得到的一致激励和多点激励下的桥梁地震响应差别较大,多点激励下的横桥向和竖向地震位移响应是一致激励地震时程计算得到的位移响应的2~3倍;在地震波波速为500或1 000 m·s-1时,桥梁结构关键位置杆件的弯矩达到最大.因此,在进行大跨度拱桥的地震响应动态时程分析时,应该考虑多点激励,以反映桥梁结构在真实地震作用下的实际受力状态和变形性能.  相似文献   

5.
为研究行波效应非一致激励对大跨度结合梁斜拉桥地震响应的影响,以西部高烈度地区某高速公路上一座跨径为(67+110+360+110+67)m的结合梁斜拉桥为研究对象,利用ANSYS建立其空间动力模型,采用非线性时程分析法对比分析了非一致激励与一致激励作用下斜拉桥的地震响应。研究结果表明:行波效应总体上使主梁与塔顶纵向位移响应减小,随着波速的增大,位移逐渐趋于一致激励;在波速较小时,考虑行波效应的塔底截面弯矩及剪力比一致激励要小,但墩底截面的弯矩和剪力略微增大;当波速较大时行波输入与一致激励的地震响应基本相同。考虑行波效应后墩梁和塔梁间相对位移均有所增大,墩梁和塔梁间相对位移变化不规律,震荡次数减少。  相似文献   

6.
大跨度斜拉桥地震响应分析   总被引:1,自引:0,他引:1  
针对国外一座在建的大跨度斜拉桥,采用脊梁模型,基于大型通用有限元分析程序ANSYS建立了斜拉桥空间结构动力分析模型,使用3条实际地震波对该桥在纵、横向地震激励下的响应进行了计算分析,给出了主梁跨中和塔顶及塔底的内力、位移的地震响应规律,取得了一些有价值的结果。  相似文献   

7.
为了研究行波及相干效应对超千米跨度公铁两用斜拉桥地震响应的影响,基于通用有限元软件ANSYS,借助高效的虚拟激励法分别得到考虑两种效应的结构地震响应值,通过对比研究,结果表明:(1)仅考虑行波效应时,在视波速取500 m/s工况下,主梁纵向位移和竖向位移出现最大均方根值,行波效应对主梁纵向位移响应影响最为显著;(2)仅考虑相干效应时,主梁纵向位移和横向位移在部分相干工况下出现最大均方根值,主梁跨中横向位移的均方根值为0.274 m,较一致激励(完全相干)增大了126.4%;(3)两种效应对结构1号边墩、2号辅助墩和3号主塔的不同地震响应的影响程度存在较大差异,需具体响应具体分析。通过各具体工况下的结果对比,得出超大跨度斜拉桥地震响应分析考虑行波和相干效应十分必要的结论。  相似文献   

8.
建立简化的汀九斜拉桥有限元模型 (FEM) ,计算该桥的动力特性 ,利用完备模态应变能法 (CMSE)进行该桥的损伤诊断数值仿真试验。结果表明简化的汀九斜拉桥 FEM能够反映真实结构的动力特性 :完备模态应变能法适用于低频密频的大跨度斜拉桥、悬索桥等柔性结构 ,并且只需少量低阶模态即可保证结构损伤诊断精度  相似文献   

9.
研究目的:地震激励的输入是大跨度桥梁结构抗震设计中最薄弱的环节。大跨度桥梁结构由于基础间间距较大,进行地震响应分析时应考虑行波效应的影响。目前,国内对于支承体系斜拉桥行波效应影响规律的研究成果并不多见。该文基于大型有限元分析软件MIDAS/CIVIL计算平台,较为准确地模拟了地震波对郑州市中心区跨铁路斜拉桥基础不同位置的激励差异,分析比较了该桥在不同波速地震波作用下的行波效应,对该类桥型地震响应行波效应的一般影响规律进行了讨论。研究结论:在一定的相位差范围内,考虑地震波的各单向行波效应和三向正交行波效应时,结构的内力与位移均呈周期性变化,并且变化周期与桥梁自振周期基本一致。同时,行波效应对支承体系斜拉桥地震响应峰值存在显著影响。  相似文献   

10.
研究目的:地震激励的输入是大跨度桥梁结构抗震设计中最薄弱的环节.大跨度桥梁结构由于基础间间距较大,进行地震响应分析时应考虑行波效应的影响.目前,国内对于支承体系斜拉桥行波效应影响规律的研究成果并不多见.该文基于大型有限元分析软件MIDAS/CIVIL计算平台,较为准确地模拟了地震波对郑州市中心区跨铁路斜拉桥基础不同位置的激励差异,分析比较了该桥在不同波速地震波作用下的行波效应,对该类桥型地震响应行波效应的一般影响规律进行了讨论.研究结论:在一定的相位差范围内,考虑地震波的各单向行波效应和三向正交行波效应时,结构的内力与位移均呈周期性变化,并且变化周期与桥梁自振周期基本一致.同时,行波效应对支承体系斜拉桥地震响应峰值存在显著影响.  相似文献   

11.
以野山河大桥为工程背景,建立了该桥的空间有限元模型,研究了该桥的动力特性。基于大质量法的多支承激励运动方程,探讨了一致输入、传导效应、部分相干效应等空间变化特性对其地震响应的影响,并分析了竖向地震分量、波速等特性对大跨度钢管混凝土拱桥地震反应的影响规律,综合评价了该桥的抗震性能。  相似文献   

12.
运用ANSYS软件建立某大跨度铁路斜拉桥梁轨相互作用有限元模型,进行列车制动力作用下的梁轨动力响应分析,研究梁轨相对位移及钢轨制动附加力的动力放大效应以及制动力作用位置、制动距离、斜拉桥结构体系等参数对梁轨动力响应的影响。结果表明:列车制动过程中,钢轨制动附加力峰值产生于斜拉桥梁端;斜拉桥结构在列车制动作用下的动力放大效应并不明显;制动力作用位置、斜拉桥结构体系对梁轨动力响应峰值有较大的影响,而制动距离对动力响应计算结果的影响不大。  相似文献   

13.
沿海海湾主航道一般通行海轮,当高速铁路跨越海湾主航道时,为满足较高的通航净空标准需要采用大跨度铁路桥梁结构。由于高速铁路行车对桥梁性能要求高,主通航孔大跨度桥梁结构方案在技术及经济上是否合理可行成为值得重点研究的问题。结合沿海某海湾西航道通行10万t海轮的通航要求,重点研究双孔通航主跨2×460 m三塔斜拉桥和单孔通航主跨812 m两塔斜拉桥两种桥式方案。建立结构计算模型,对结构静力计算结果及技术经济指标进行综合对比分析,最后推荐西航道桥采用2×460 m三塔斜拉桥方案。进一步分析三塔斜拉桥结构主要静力动力结构行为,研究三塔斜拉桥结构设计中的主梁结构形式、体系刚度控制、主梁长联温度问题、拉索恒载应力与疲劳、结构抗风性能等关键技术的工程解决措施。研究表明:通过中跨采用钢混结合梁﹑边跨采用混凝土箱梁以及增大中塔及其两侧主跨斜拉索重力刚度和中塔采取塔梁固结体系等措施,能较大地提高三塔斜拉桥体系刚度,将三塔斜拉桥应用于高速铁路在技术经济上是合理可行的。对跨海湾大跨度双线高速铁路斜拉桥结构的设计研究具有一定的参考价值。  相似文献   

14.
研究目的:斜拉桥因跨度大,可能在车辆通过时发生较大的变形,致使结构几何非线性效应变得显著.对斜拉桥进行非线性动力分析可以为桥梁结构设计提供更精确的理论依据.针对大跨度斜拉桥的几何非线性特征及铁路桥的特点,建立结构空间动力分析模型.通过模拟机车过桥的全过程,计算在机车通过时斜拉桥的动力响应.研究结论:求出了主跨300m铁路斜拉桥方案在机车通过时线性分析与非线性分析的动力响应结果,给出了结构位移时程曲线.对于大跨度铁路斜拉桥,非线性分析结果与线性分析结果相比,具有明显差别.在大跨度铁路斜拉桥车激振动分析中,考虑结构几何非线性效应是必要的.  相似文献   

15.
为分析地震输入方法对列车-轨道-桥梁系统地震响应的影响,考虑路基和桥梁地震力边界条件,分别采用直接求解法、相对运动法、大质量法和大刚度法输入非一致地震激励,建立不同地震输入方法下的列车—轨道—桥梁动力分析模型,以跨度(48+5×80+48)m的刚构-连续组合梁桥为例,对比不同地震输入方法下车桥系统的地震响应。结果表明:大刚度法与直接求解法求得的车桥地震响应完全相同;大质量法求得的脱轨系数和轮重减载率相比直接求解法偏大,最大偏差达44.0%和26.4%;相对运动法求得的脱轨系数、轮重减载率和桥梁位移相比直接求解法偏小,最大偏差分别为32.5%,12.8%和51.9%。由于大刚度法只需输入地震动位移时程,相比直接求解法计算更为简便,因此,在列车-轨道-桥梁耦合系统中大刚度法是输入非一致地震激励的最优方法。  相似文献   

16.
采用ANSYS软件分析天津西站Ⅱ区的结构特征,在传统随机振动算法中引入位移反应谱,结合水平向和竖向互功率谱表达形式的合理修正方法、沿结构整体坐标系方向功率谱、位移反应谱和传统三维平稳随机振动计算方法,提出用于高速铁路车站抗震计算的多维反应谱组合方法,并将多维反应谱组合方法的计算结果与时程响应分析和规范算法的计算结果进行比较。结果表明:高速铁路车站结构的异向振型间的相关性较强,地震动输入角度对结构响应的影响显著,而规范算法忽略了异向地震激励的相关性,不能反映地震动输入角度对结构响应的影响;多维反应谱组合法由于合理考虑了异向地震激励输入角度的变化、异向振型和地震激励的相关性,因此其计算结果与时程响应分析的结果吻合,更适用于高速铁路车站的抗震计算。  相似文献   

17.
CRTSⅢ型板式无砟轨道施工精度要求高,铺设在柔性的大跨度斜拉桥上精度难以控制。为研究斜拉桥无砟轨道施工精度控制方法,以新建南昌至赣州高速铁路赣州赣江特大桥为工程背景,通过有限元模拟分析,研究大跨度斜拉桥无砟轨道施工时,CPⅢ网联测的环境控制要求,以及大跨度斜拉桥无砟轨道施工的线形控制方法。结果表明,选择气温稳定、无温度梯度影响且风力不超过3级的夜间环境进行CPⅢ网联测,可有效保证大跨度柔性斜拉桥CPⅢ控制网联测的精度;无砟轨道施工阶段,合理调整索力,并根据大桥实测变形值不断修正预拱度计算模型,用于指导无砟轨道精调施工,可保证大跨度斜拉桥CRTSⅢ型板式无砟轨道的施工质量与精度要求。  相似文献   

18.
基于近年来我国高速铁路大跨度斜拉桥动力性能测试实践和试验数据,探讨大跨度斜拉桥运营性能检定技术,提出了高速铁路大跨度斜拉桥运营性能评定的主要技术参数。对于主跨跨度在430~630m范围内的大跨度斜拉桥,给出了梁体1阶竖向、横向自振频率参考值与跨度及主桁宽度的关系式,提出了采用1/800作为主跨竖向挠跨比参考值,建议考虑设计活载的差别,梁端竖向转角的参考值采用1.0‰或1.5‰,给出了不同检定参数的测试方法建议。我国高速铁路大跨度斜拉桥运营性能试验数据仍需要进一步积累和分析总结,以形成适合于我国高速铁路大跨度斜拉桥运营性能评估标准。  相似文献   

19.
预先确定斜拉桥的弹塑性区域,把包含多微段平面变刚度梁单元推广应用于大跨度斜拉桥的非线性地震响应分析,用微段的刚度变化模拟钢筋混凝土的弹塑性性能,对双塔单索面钢筋混凝土斜拉桥进行了考虑几何非线性和材料非线性的地震响应分析,编制了相应的弹塑性分析程序,并与Huges单元分析结果进行了比较。结果表明:该法能较好地模拟在强震作用下钢筋混凝土斜拉桥的非线性性能,可以在大跨斜拉桥的非线性地震响应分析中应用。  相似文献   

20.
研究目的:为探讨行波激励条件下铁路矮塔斜拉桥弹塑性地震响应的变化规律,基于弹塑性分析理论基础,本文以某主跨(144+288+144)m的铁路矮塔斜拉桥为工程背景,采用大刚度法实现多点激励以模拟行波效应,对比分析一致激励和行波激励(考虑不同剪切波速)条件下铁路矮塔斜拉桥弹塑性地震响应的差异。研究结论:(1)相比一致激励,行波效应会引起桥墩产生更大的弹塑性位移、弯矩响应及其非线性位移延性比(延性指标),并使桥墩发生更大的塑性变形;(2)当剪切波速为200 m/s时,行波效应使9~#、10~#主墩福州与平潭侧薄壁墩身非线性位移延性比分别增大6.32%、17.90%、17.67%和33.92%,降低了其延性抗震能力;(3)进行类似结构延性抗震设计时,应考虑地震行波效应的影响;(4)该研究成果可用于指导桥梁延性抗震设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号