首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
汽车的碰撞安全问题是汽车行业一直重点关注的问题之一,开展汽车结构的耐撞性设计已成为提升车辆碰撞安全性的重要手段。文章对国内外汽车结构耐撞性设计与优化的研究成果进行回顾与总结,鉴于碰撞过程的强非线性与众多设计准则相互耦合等特性,重点对近似多目标耐撞性优化方法及其应用进行综述,并分析存在的问题和进一步深入研究的方向。  相似文献   

2.
车身耐撞性和碰撞相容性体现的是汽车的基本安全因素指标,通过对现有汽车碰撞实验所体现出的耐撞性、相容性和吸能性优化建模仿真,提高车内自身安全装置和提升小质量汽车刚度、降低大质量汽车刚度,以达到提高汽车整体安全系数的效果。  相似文献   

3.
文中利用NX三维建模软件构建了某汽车的三维几何模型,然后利用ANSA网格软件对三维模型进行网格划分处理,并用LS-DYNA对汽车正面碰撞安全性能进行分析,通过对某汽车正面碰撞仿真计算,分析了汽车正面主要结构在碰撞中的结构耐撞性,并就仿真结果与真实实验数据进行对比,以研究仿真结果的准确性。  相似文献   

4.
提出了一种基于子结构拓扑优化的大客车车身骨架耐撞性改进设计方法。首先通过测试和仿真进行某承载式大客车耐撞性评价,分析车身结构变形的症结;提取前端驾驶区骨架为子结构,以其碰撞吸能量相同为等效条件,进行子结构耐撞性分析与改进;接着为控制子结构的局部失稳变形,以吸能盒碰撞力峰值为载荷条件,进行子结构空间区域拓扑优化,完成8组改进方案的对比分析,选取质量最轻的达标方案进行台车实验验证;最后将该方案导入整车结构中进行耐撞性改进验证。结果表明:整车的耐撞性得到有效提高。  相似文献   

5.
基于Kriging模型的车身耐撞性优化设计   总被引:1,自引:0,他引:1  
采用最优拉丁方法进行试验设计,基于Kriging模型建立汽车耐撞性评价指标的替代模型,然后利用替代模型建立耐撞性优化的数学模型并进行耐撞性优化。结果表明,基于Kriging的替代模型的拟合精度较高,采用该模型进行的优化可提高汽车的耐撞性。  相似文献   

6.
针对行人保护柔性腿型(Flex-PLI)、RCAR低速碰撞、高速偏置碰撞3种工况,采用有限元建模方法,对某车型前保险杠系统进行耐撞性仿真分析,分析表明该车前保险杠系统不能满足碰撞安全性要求。以前保险杠系统主要结构参数为变量进行正交试验设计,利用综合分析法对前保险杠结构进行优化匹配。在结构优化的基础上,以厚度为变量利用响应面和多目标遗传算法对前保险杠系统的安全性能和质量进行了进一步优化,其整体耐撞性能得到提升。  相似文献   

7.
吴靖 《汽车科技》2013,(4):37-41
以某型承载式大客车为研究对象,利用有限元法和非线性理论建立整车有限元模型,通过通用显式动力分析软件对其100%正面碰撞进行仿真计算,研究该承载式车身骨架结构的变形大小以及变形特点,并对乘员的生存空间进行分析比较,评价该客车耐撞性与安全性能,并为进一步研究改进客车耐撞性能提供相关参考。  相似文献   

8.
车辆正面碰撞中的耐撞性能仿真分析   总被引:1,自引:0,他引:1  
为了评价汽车在正面碰撞事故中耐撞性能,应用HyperWorks仿真软件建立了车辆正面100%碰撞有限元模型。后处理利用HyperView对B柱下端加速度、A柱上部最大折弯角、前围板侵入量以及前门铰链变形量4项重要评价指标进行仿真分析,以此评估正面碰撞中车体的耐撞性能。结果表明:B柱下端最大加速度小于3ms合成加速度72g的要求,A柱上部最大折弯角对乘员伤害程度在允许范围内,前围板变形云图小范围超出目标值,前门铰链变形量不影响碰撞后车门的正常开启,车体耐撞性能良好。类比2017年C-NCAP实车正面碰撞结果,表明仿真试验具有较高的可信性,为车体耐撞性优化设计提供依据。  相似文献   

9.
该文建立了某实车正面小重叠碰撞有限元分析模型。先对该模型进行对标验证,然后根据"美国公路安全保险协会"(IIHS)相关评价体系的要求,进行了25%重叠偏置碰撞仿真,并分析与评估了碰撞中的结构变形。根据在25%小重叠偏置碰撞工况与传统40%偏置碰撞工况的有限元仿真结果的对比,提出了该车的优化方案:为了增加前舱吸收碰撞能量的能力和提高乘员舱刚度,改进了发动机舱上边梁结构。结果表明:该优化后的车体结构方案,得分从原来的"差",提升为"良",从而提高了整车的耐撞性。  相似文献   

10.
针对某乘用车原钢制保险杠低速碰撞变形大的问题和汽车轻量化设计的需求,新开发了铝合金保险杠。分别建立了原钢制保险杠和新开发的铝合金保险杠的有限元模型,对其进行了三点静压仿真,并进行了试验验证。结果表明,铝合金保险杠强度性能优于原钢制保险杠。通过台车碰撞仿真和试验,分析了两款保险杠的耐撞性,相同工况下铝合金保险杠防撞梁的变形量和台车减速度值均小于钢制保险杠,其耐撞性优于原钢制保险杠。  相似文献   

11.
微型客车因其成本低廉,安全配置低,吸能空间有限,对车身结构的安全性设计有较高的要求.本文对某款成熟车型进行了正面碰撞仿真分析,并与试验结果进行对标,针对原车在车身安全设计方面的缺点,对该车的纵梁结构进行优化,对截面形状、加强板结构、诱导槽等进行改进设计,设置合理的前部刚度.优化后,车身最大加速度降低了38.5%,平均加速度降低了5.3%,结构耐撞性得到明显提高,纵梁加强板减重1.18 kg,并且碰撞相容性也得到了优化.结果表明,在乘员空间和约束系统不变的前提下,新结构使整车耐撞性有较明显的提高,乘员伤害值有明显降低.  相似文献   

12.
按照我国乘用车追尾碰撞燃油系统安全法规,针对某款乘用车建立有限元模型,并进行追尾碰撞仿真研究,分析验证其燃油系统的安全性。仿真结果为今后的汽车追尾碰撞仿真及尾部耐撞性研究提供了借鉴。  相似文献   

13.
为研究冲压成形中材料特性变化对结构耐撞性的影响,以某款SUV车横梁的帽形加强梁为例,以塑性应变和厚度不均作为碰撞仿真分析的初始条件,进行考虑成形工艺因素的结构耐撞性分析,并与传统的碰撞仿真与试验结果进行了对比.结果表明,加工硬化提高了结构的刚度,可能导致结构变形模式的改变;厚度不均对结构变形和吸能的影响很大,在碰撞仿真中应引入成形因素以提高仿真精度.  相似文献   

14.
按照我国乘用车追尾碰撞燃油系统安全法规,针对某款乘用车建立有限元模型,并进行追尾碰撞仿真研究,分析验证其燃油系统的安全性.仿真结果为今后的汽车追尾碰撞仿真及尾部耐撞性研究提供了借鉴.  相似文献   

15.
在汽车碰撞过程中,汽车前纵梁是主要的吸能装置.通过对方管薄壁结构和蜂窝型多胞结构的耐撞性进行对比分析可知,蜂窝型多胞结构杆件具有较好的吸能特性.将蜂窝型杆件应用于汽车前纵梁上进行碰撞分析.结果显示,蜂窝型多胞结构具有更优越的耐撞性能,且碰撞过程的材料利用率也较高.  相似文献   

16.
某款SUV车型进行IIHS规程25%重叠偏置碰撞试验评价等级为"较差",采用理论、计算机辅助工程(Computer Aided Engineering,CAE)和试验相结合的方式对其结构耐撞性进行改进分析研究。分析探讨了小重叠偏置碰撞中载荷传递路径和能量传递情况,通过建立有限元模型模拟碰撞过程,CAE仿真和试验结果吻合较好。结合理论分析确定改进策略和方案,对改进方案进行仿真分析,仿真结果显示车辆的车体变形程度和乘员舱侵入量明显减小,改进方案的评价等级提升至"良好"。根据实车情况采用最优方案进行试验验证,最终获得"良好"评级,对于小重叠偏置碰撞结构耐撞性能开发具有较好的指导作用。  相似文献   

17.
以某A级车前碰撞吸能盒为研究对象,通过仿真优化、总成试验、台车试验、整车试验的耐撞性能开发流程,实现内高压吸能盒的耐撞性能开发和验证。在保证结构更改对耐撞性能、约束系统性能影响尽可能小的前提下,进行了吸能盒等安全部件的性能开发。结果表明,与原有冲焊结构相比,内高压结构的变形一致性更高,质量降低3%,成本降低4.2%,RCAR工况下总成吸能增加26.7%,具有较好的综合性能优势。  相似文献   

18.
为实现汽车轻量化,提高汽车耐撞性,并考虑汽车B柱结构形式和材料特性,采用了一种复合材料B柱削层结构。利用复合材料可通过削层工艺方便地实现变截面厚度的特性,分两步对复合材料B柱削层结构进行了多目标的优化。首先,通过分析B柱结构形式确定削层区域,以轻量化为目标,构建代理模型并采用多岛遗传算法进行优化,得到各个子层区域的铺层层数。然后,综合考虑削层结构的工艺和性能特点,研究不同铺层角度和铺层顺序对耐撞性的影响,确定了铺层最佳方案。最终结果表明,在满足工艺要求的条件下,复合材料B柱结构的质量减轻了61.4%,并提升了整车在顶压和侧面碰撞中的耐撞性。  相似文献   

19.
为保证B柱耐撞性,同时减轻其质量以实现汽车轻量化,对某轿车B柱侧面碰撞进行了有限元分析.针对B柱外板、内板和两加强板厚度,设计了L16(45)正交试验,并由此进行仿真,得到胸部和腹部侵入量与侵入速度的数学代理模型.应用序列二次规划对B柱各板厚度进行优化,可知B柱质量减轻11.6%,在兼顾耐撞性的同时实现了汽车轻量化.  相似文献   

20.
为满足车身轻量化和耐撞性设计的要求,采用材料替换与结构改进相结合的方法对前端进行优化。基于试验验证的整车正面碰撞模型,建立了铝制前端模型并与钢制设计方案进行了耐撞性对比。为提高铝制前端耐撞性能,设计了不同胞数的多胞构型截面,并在三点弯曲和轴向压溃工况下分析其吸能特性。运用多目标优化方法对多胞前端的结构参数进行寻优。结果表明,优化后的铝制多胞结构能在改善整车耐撞性的同时,显著减轻前端质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号