首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过CFD(计算流体动力学)仿真对地铁列车设备舱压力场和温度场进行了计算,得到隧道运行、明线运行、高架运行及停站四种工况下列车设备舱内部空气温度分布和压力分布,为设备舱通风设备的布置与设计提出建议。结果表明,通过在裙板两侧开通风口,加大进入设备舱的冷却风量,将发热量大的设备布置于设备舱的两端,可以有效地提高设备舱散热。  相似文献   

2.
为研究城市轨道列车气动特性以及底部部件对列车气动特性的影响,针对三节车模型进行简化,保有底部部件较高完整性,采用Realizablek-ε湍流模型预测列车周围流场。数值计算结果表明:列车气动阻力分布呈现出尾车阻力最大,占三节车总阻力的48%;中间车阻力最小,占总阻力的14%。其中转向架分别占头车、中间车和尾车总阻力的15.1%,56.4%和23.0%。车底设备分别占头车、中间车和尾车总阻力10.5%,10.3%和8.6%。因此对于头车、尾车采取减阻方案首先是采用流线型头型的方式减少流动分离现象。对于中间车减阻方法则要首先针对底部部件,采取密封舱的方式减少其产生的压差阻力。通过优化列车头型发现列车气动特性得到明显的改善,其中列车头车、中间车和尾车阻力分别为原始情况下的61.4%,70.1%和58.3%。在流线型外形基础上进一步稳定列车底部区域流场也有效改善了底部区域部件气动特性。  相似文献   

3.
设备舱底板在列车行驶过程中会受到气动载荷与石子冲击的影响,其强度直接影响到设备舱内的设备安全。文章基于渐进失效分析理论和刚度退化模型,在验证仿真建模的准确性后,建立了碳纤维/泡沫夹芯设备舱底板的静强度与低速冲击工况下的有限元模型。基于有限元模型分析了设备舱底板在5种静强度工况下的失效因子、应变和失效载荷,讨论了200 J、300 J、400 J、500 J的冲击能量以及100 mm、200 mm、300 mm的冲头直径对设备舱底板抗冲击性能的影响。结果表明,设备舱底板满足静强度要求,其失效载荷为63.0 kPa,最大失效因子及最大应变位置位于螺栓孔周围;冲击接触力峰值、上面板凹陷深度及各铺层的基体失效面积随冲击能量的增加而增大,而冲头直径的变化对设备舱底板的低速冲击性能影响较小。  相似文献   

4.
高速列车在运行时,列车与空气的相互作用十分强烈。在实际的车辆开发研究过程中,随着列车的提速,如何有效地利用空气动力学特性变得愈来愈重要[1]。本文创建了350km/h高速列车编组明线运行的三维计算模型,并建立了头车车下设备舱内部流场的计算模型。对列车在环境温度为40℃~-40℃下,设备舱内的温度分布情况进行了数值研究,获得发热设备表面温度随不同环境温度的变化规律,为车下设备的合理布局提供依据。  相似文献   

5.
为了研究高速列车设备舱内大型通风设备不同通风方式对设备舱通风性能的影响,建立单侧进风单侧出风和双侧进风底部出风两种结构几何模型,采用四面体网格离散计算域,采用通风设备流量进出口边界,采用多孔介质模型处理裙板格栅复杂几何结构,将SIMPLE算法与Realizable k-ε湍流模型相结合,完成不同列车运行速度(400,350,300,250,200km/h)及列车运行方向(上行,下行)等工况下的数值仿真计算,对两种不同通风方式设备舱内速度场、车辆不同运行速度及方向对设备舱裙板格栅进出口风速的影响、通风阻力等进行综合分析。结果表明:相比双侧进风底部出风方式,单侧进风单侧出风方式的设备排风阻力较小,不同进风口高风速与低风速之间差值较大,相邻进风口进风风速变化梯度较大,设备舱内气流组织分布的均匀性较差[1]。  相似文献   

6.
转向架作为高速列车大面积裸露在外且外形复杂的运行部件受到列车底部气流的直接作用,区域气动外形结构对高速列车整车气动阻力具有重要影响。基于三维稳态SST k-ω双方程湍流模型,采用数值仿真方法研究了轴箱外置式转向架不同包覆方式对高速列车气动性能的影响。研究了转向架区域安装小裙板、半包裙板、全包裙板、全包裙板+小底板以及全包裙板+大底板等5种方案下的高速列车气动性能,比较了不同方案下高速列车气动阻力的变化规律,阐明了高速转向架包覆方式对整车气动阻力、车底流动特性以及列车表面压力分布的影响。研究结果表明:随着转向架裙板包覆面积的增加,转向架腔后端板受到的气流冲击逐渐减弱,后端板上的正压分布降低,列车转向架区域周围的边界层厚度逐渐减小,转向架区域内的压力分布差异性逐渐减小,从而实现了列车整车气动阻力系数的降低。与小裙板模型相比,半包裙板、全包裙板、全包裙板+小底板以及全包裙板+大底板模型的列车气动阻力系数分别降低了5.2%、8.65%、10.3%、11.1%。对于轴箱外置式转向架来说,全包裙板+大底板方案可有效改善转向架区域流场,降低整车气动阻力。研究得到的转向架包覆方式将为新一代高速列车气动...  相似文献   

7.
高速列车设备舱压力特性分析   总被引:1,自引:0,他引:1  
利用CFD数值模拟方法,研究了在隧道内会车工况下CRH3型列车设备舱的压力特性,为列车设备舱的结构设计提供了理论依据。  相似文献   

8.
高速列车车顶高压设备裸露于室外,易受环境影响产生积污。针对高速列车车顶受电弓绝缘子区域的流场特性进行仿真计算,分析高速列车运行情况下的流场结构,对3种不同导流罩下的车顶高压设备流场特性进行对比,得到了不同导流罩对高压设备区域流场的影响。结果表明:侧板型导流罩可增加绝缘子周围气流速度,避免污物沉积。  相似文献   

9.
为研究不同风向角下高速铁路列车气动力特性,分析流线型列车周围流场结构差异对列车气动力影响,以高速铁路典型CRH2列车为研究背景,采用风洞试验和数值模拟相结合的研究手段对不同工况下列车气动力和流场结构进行分析.研究结果表明:测压和测力试验结果具有很好的一致性,数值模拟与风洞试验结果吻合良好,可用来分析风向角对列车气动特性...  相似文献   

10.
针对兰新客运专线动车组在高温环境下设备舱的通风散热问题,通过实车试验分析了高温环境下动车组设备舱内用风设备的温度变化情况,研究了高温环境对动车组设备舱内用风设备的影响。  相似文献   

11.
采用三维雷诺时均SST k-ω双方程湍流模型和有限体积法对一种已经运营的高速列车周围流场进行数值模拟,分析列车头部主型线的变化对列车周围流场的影响,将计算结果在风动试验中进行验证。研究结果表明:列车周围压力场的差异主要存在于主型线变化区域,车身受到的影响有限;列车尾部流场受到主型线的影响较大,造成了尾车气动载荷数据差异较大;该型号列车头部纵剖面和水平剖面型线造成的头部的局部变化并未能大幅提高列车的抗风性能。研究方法及结果可为高速列车外形设计提供有效参考。  相似文献   

12.
近年来,真空管道列车系统以其减阻降噪、高速运行的特点成为高速列车新的研究方向。真空管道列车运行环境复杂多变,对管道内部气动特性及流场结构的研究在真空管道列车的设计和优化中尤为重要。研究基于SST k-ω湍流模型及大涡模拟方法,采用三维数值模型对阻塞比为0.15的真空管道磁悬浮列车系统在马赫数为0.490~0.980的来流条件和0.3~0.1 atm的管道压力下进行稳态和非稳态模拟,得到列车周围外部流场的气动特性,详细阐述了列车尾流激波的形成和传播。根据不同来流马赫数和压力条件将流场分为3类典型工况,并沿流动方向将流场分为5个区域分析流场特性。结果表明,随着来流马赫数从0.490增加到0.654,尾车肩部开始出现激波。随着来流马赫数进一步增加至0.817,尾流区域出现斜激波、“X”型激波结构等复杂流动现象,不同来流马赫数条件下跨声速流场中的气流马赫数分布相似,压力系数呈现梯度分布。激波与尾涡、边界层相互干涉与融合,成为尾流流场的主要结构。研究成果可为真空管道列车不同来流速度和不同真空度情况尾流激波抑制以及气动阻力优化设计提供工程指导。  相似文献   

13.
为清晰掌握动车组在极端温度和恶劣风环境下设备舱内沙尘的流向情况,采用列车空气动力学的数值计算方法,对不同恶劣风环境和高温条件下动车组设备舱内流场进行研究。通过对动车组设备舱内压力场和速度场流向的分析比较,获取了动车组在不同车速和不同风速下,其设备舱内流场变化情况,以及底部开孔对设备舱内流场的影响。  相似文献   

14.
采用基于SSTκ-ω的DDES数值模拟计算方法,对城际列车的气动阻力进行研究。分析城际列车的阻力分布及组成,根据列车流场变化对列车表面进行平顺化,主要优化车下设备、风挡和空调等部位,分析各种措施减阻效果。通过对结果的分析对比,得出了其变化规律:列车气动阻力主要由压差阻力组成,占总阻力的70%~90%;列车转向架、车下设备、受电弓及风挡连接处流场变化比较剧烈,需通过外形优化进行减阻。优化模型减阻效果显著,以设备舱的形式封装车下设备,总气动阻力下降3.7%;封装车下设备的同时采用外风挡,列车总气动阻力下降12.7%;增加2种不同角度的空调导流装置,总气动阻力分别下降16.3%和18.9%。  相似文献   

15.
基于大涡模拟的高速列车横风运行安全性研究   总被引:1,自引:0,他引:1  
结合高速列车空气动力学和多体系统动力学,研究横风对高速列车运行安全性的影响.首先采用大涡模拟计算方法,研究了不同横风风速下高速列车非定常气动载荷的时域及频域特性,列车周围流场结构及相应的非定常流场特性.然后建立高速列车多体系统动力学模型,将得到的气动力作为外加载荷作用于列车上,研究了不同横风风速下定常气动力和非定常气动力对直线上高速列车运行安全性的影响特性,计算结果表明,与定常气动力相比,作用于车身上的非定常气动力使列车的振动加剧.最后参照高速列车的安全运行标准,对高速列车的安全运行进行分析,为横风下高速列车的安全运行提供参考.  相似文献   

16.
在长期的高速列车运营过程中,极易形成前后车辆的不同形式偏置,造成列车气动性能改变,甚至可能引发行车平稳性问题,极大影响乘坐舒适性和安全性。以高速列车尾车作为研究对象,探究尾车上下偏置时,高速列车尾部流场变化以及气动特性。基于SST k-ω双方程湍流模型,采用数值仿真方法研究了350 km/h高速列车尾车无偏置、尾车下降20 mm、尾车下降40 mm、尾车下降60 mm、尾车上升20 mm、尾车上升40 mm以及尾车上升60 mm 7种工况下列车的气动性能,分析高速列车气动阻力的变化规律,揭示了不同垂向位移下高速列车尾部流场特性以及列车表面压力分布情况。研究结果表明:高速列车尾部垂向位移对列车整体气动阻力影响较小,但对高速列车气动阻力分布以及流场特性造成一定影响。当尾车偏置位移达到60 mm时,列车车体气动阻力相对于无偏置工况分别降低了-1.11%和2.64%,转向架气动阻力相对无偏置情况下分别降低了11.35%和-17.43%。此外,尾车偏置对列车近尾流区域流场结构有一定影响,尾车鼻锥下方排障器周围漩涡结构由双漩涡结构向单漩涡结构转变;鼻尖处漩涡结构随着尾车高度下降而增大,随着尾车高度...  相似文献   

17.
列车高速运行过程中,车顶绝缘子表面的积污特性受绝缘子周围气流场分布特性的影响较大,建立车顶绝缘子的外部三维流场模型,利用有限元模拟的方法计算列车在不同的运行速度下,车顶绝缘子周围气流场分布的情况以及空气中的污秽颗粒与绝缘子表面的碰撞情况,结合现场调研,结果表明:车顶绝缘子的积污特性主要受到绝缘子背风面气压分布的影响,伞裙背风面的负压值、污秽颗粒碰撞率以及实测的积污量均呈两端大中间小的规律,且随着列车速度的加快,伞裙背风面的负压值及污秽颗粒碰撞率皆呈现增加的趋势。  相似文献   

18.
文章采用动模型试验与三维流场数值模拟方法,对某型城际动车组在无前导流罩、无裙板、无底板,有前导流罩、无裙板、无底板,有前导流罩、有裙板、有底板3种情况下,以250km/h通过净隧道时引起的阻力变化及瞬变压力变化问题进行了研究,得出了列车前导流罩、裙板以及底板对整车气动阻力及瞬变压力的影响规律。列车通过隧道时,前导流罩、裙板以及底板对其阻力有明显的影响。前导流罩对列车整体空气动力学性能影响很大,有前导流罩破坏了列车车头的整体流线型,严重影响了列车的气动性能。裙板及底板对列车阻力影响较大,对压力波影响相对较小。有前导流罩、有裙板、有底板列车的空气动力学性能明显优于无前导流罩、无裙板、无底板和有前导流罩、无裙板、无底板的列车的空气动力学性能。  相似文献   

19.
横风下高速列车非定常空气动力特性研究   总被引:5,自引:3,他引:2  
通过大涡模拟(LES)数值计算方法,对均匀定常横风下高速列车的非定常空气动力特性进行了研究。计算得到横风下列车车体所受空气动力的时域及频域特性、列车周围非定常流动结构及相应非定常流场特性。对计算结果分析表明,即使在均匀定常横风下,列车所受空气动力也存在明显的非定常性。对于所研究车型,这种非定常空气动力的特征频率出现在11 Hz以下,并且主要峰值集中在0~3 Hz区间,这与列车系统本身的固有振动模态频率接近,存在横风引起列车系统共振,进而发生列车倾覆的可能;同时研究表明,横风下列车周围流场非定常特性与列车所受非定常空气动力特性在频域中存在对应关系,可以通过测量非定常流场确定列车非定常空气动力特性。  相似文献   

20.
通过采用三维瞬态DDES数值方法模拟强横风下,在路堤上运行的高速列车周围流场,对比3,6,9和12 m 4种路堤高度对高速列车瞬态气动性能的影响.研究结果表明:强横风下,随着路堤高度的增加,列车两侧压力差增大,并影响列车周围流速分布,使得流场情况更为复杂.瞬态流场结构显示,在路堤高度增加之后,车体背风侧的涡结构逐渐由体积较小、脉动频率较高、能量较小的分离状逐渐转变为融合度更高、体积更大、脉动频率较低、能量较大的涡结构,将会使得车体运动的稳定性受到更大影响,更容易发生倾覆危险.从气动力来看,随着路堤高度的增加,头车受到的气动载荷增加较大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号