首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
倾斜软基上修建高速公路(铁路)时,地基容易出现差异沉降、滑移甚至垮塌。提出坡脚斜直桩组合结构+桩体复合地基加固倾斜软基,采用模型试验,对比测试倾斜软基上桩体复合地基受压时,坡脚处插入硬层的双单桩、双直桩组合结构以及斜直桩组合结构的桩侧土压力、桩身应变和外侧桩水平位移,揭示倾斜软基上插入硬层的斜直桩组合结构单侧受力变形机制与破坏模式,为倾斜软基上斜直桩组合结构的设计提供试验依据。结果表明:①内、外侧桩在桩身中部偏上位置呈现桩侧土压力峰值;外侧桩倾斜度增大,其桩侧土压力峰值快速减小,内侧桩桩侧土压力大于外侧桩;②外侧桩在桩身中部偏上位置呈现侧移峰值,桩顶嵌固连梁外侧桩的桩身水平位移及其峰值均随倾斜度增大而减小,总是小于桩顶自由的外侧桩,峰值位置也较低;③桩身中上部出现弯矩峰值,外侧桩弯矩峰值位置略低,外侧桩倾斜度增大导致内侧桩弯矩增大、外侧桩弯矩减小;④单侧受载时,斜直桩发生水平位移,随后弯曲变形,内侧桩率先破坏、外侧桩后破坏,具有关联性,而双直桩的破坏荷载介于斜直桩的内侧桩和外侧桩之间。加大内侧桩的抗弯刚度和外侧桩的倾斜度将大幅度提高斜直桩组合结构的整体稳定性。工程中,建议外侧桩倾斜度为10%~20%,并根据路堤高度(荷载)选择内侧桩与外侧桩刚度之比大于2。  相似文献   

2.
通过模型试验研究路堤重复加卸载下坡脚处顶部约束双排倾斜摩擦桩变位规律,为坡脚处抗滑桩优化设计提供依据。结果表明:①加载过程中,顶部约束后排摩擦倾斜桩桩身侧移随深度变化曲线与纵轴之间呈"上宽下窄"的倒梯形,破坏模式为"平移+绕桩底转动"。对于0~9°负斜桩,加载过程中桩身侧移随倾斜角增大而减小。首次加载过程中,桩身侧移随加载增加而增加。再次加载过程中,首次极限压力范围内桩身侧移不敏感,超过首次极限压力时,侧移随加载增加而增加;加载到一定压力下,侧移增速减小;②相同荷载作用下,负斜桩顶侧移小于竖直桩,与负斜桩主动承受桩顶水平荷载作用下桩顶水平位移大于直桩相反。首次加载时,各倾斜桩顶侧移均随荷载增大而增大,加载到一定值时,竖直桩顶侧移突增、率先屈服,随后趋于稳定。再次加载时,桩顶侧移随荷载增大而缓慢增加,荷载超过前一次加载的最大荷载时,倾斜桩顶侧移突增,地基侧向加载与桩顶侧移曲线将回到前次加载曲线的延长线,即具有记忆效应,随后屈服、趋于稳定;③卸载过程中,桩身各截面侧移不敏感,仅仅卸载到最后1~2级荷载时才有明显减小。工程中,建议将坡脚抗滑桩尽量斜向道路中线设置一定倾斜角度,以减少桩顶桩身侧移,提高抗滑移效果。  相似文献   

3.
深厚软基上修建高路堤时,路基经常发生不均匀沉降、滑移甚至垮塌,必须探索有效控制措施。基于倾斜桩和竖直桩工程特性,提出在坡脚设置倾斜桩、桩顶部设置连梁方案。采用室内模型试验,对承压板进行3次循环加卸载,测试承压板侧面处顶端设置连梁、底端约束的倾斜双排桩的水平位移,研究高路堤荷载作用下坡脚倾斜桩水平位移变化规律。结果表明:加载过程中,桩顶和桩身水平位移均随地基侧向荷载增加而增长,增长率随加载次数增加而降低;第2次加载超过首次加载最大压力时,加载曲线沿第1次加载曲线的延长线发展,水平位移随着荷载的增大继续增加;卸载的初、中期,桩身的回弹变形均不敏感,卸载到0时才产生明显的回弹变形,说明加载所产生的变形均主要为塑性变形;桩顶与桩底回弹量均小于桩身中部,说明桩顶连梁、桩底约束嵌固约束了水平位移;地基侧向荷载一定时,在0°~9°范围内,桩顶和桩身水平位移均随倾斜角增加而减小;相同荷载作用下,负斜桩顶侧移小于竖直桩,与负斜桩主动承受桩顶水平荷载作用下桩顶水平位移大于直桩相反;实际工程中,坡脚桩采用底部嵌岩、顶部设置连梁的倾斜桩,更有利于抵抗滑移。  相似文献   

4.
为研究水平受荷斜桩的承载变形性状,采用有限元软件模拟了斜桩在水平荷载作用下的性状并与直桩进行了比较,分析了桩身倾角、桩顶竖向荷载对斜桩桩身水平位移、桩身弯矩及剪力的影响,研究了斜桩与桩侧土之间的挤压、剪切相互作用,对水平受荷斜桩有效桩长的影响因素进行了探讨。结果表明:正斜桩的水平承载力比直桩大,负斜桩的水平承载力比直桩小;桩身倾角对斜桩水平位移、桩身弯矩及剪力有较大的影响;正斜桩桩顶水平位移小于直桩,负斜桩桩顶水平位移大于直桩,桩身倾角越大,斜桩与直桩桩顶水平位移差异越大;正斜桩、负斜桩的桩身弯矩均小于直桩,桩身倾角越大,正斜桩桩身弯矩越小,负斜桩桩身弯矩越大;正斜桩及负斜桩桩身剪力均小于直桩,正斜桩桩身剪力小于负斜桩桩身剪力;桩顶竖向荷载对正斜桩、负斜桩水平承载力的影响不同,竖向荷载提高了负斜桩的水平承载力,削弱了正斜桩的水平承载力;水平受荷斜桩与桩侧土之间的相互作用以挤压为主,剪切作用较弱;水平受荷斜桩存在一个有效桩长,对于相同的土层,无论是正斜桩、负斜桩,其有效桩长基本相同;桩侧上部土体剪切模量增大对减小有效桩长有显著的影响,下部土体剪切模量变化对有效桩长影响不大。  相似文献   

5.
为考察台后路堤荷载导致的地基软弱下卧层压缩和水平移动作用下的桥台桩基受力性状,建立了桥台桩基的三维有限元模型,验证了其合理性,并通过设置桩-土接触单元分析了桥头路基填筑对桥台桩基受力性状的影响.结果表明:由于桩的“遮拦效应”,前排桩桩-土“绕流”现象较后排桩更为明显;同时,桩的阻拦作用使桩周土体位移值较自由土场预测值偏小;桩-土相对位移较大时桩平均侧向压力与桩-土相对位移呈非线性关系;每级荷载下最大桩侧土压力约为路堤荷载的74%;路堤荷载大小与桩身最大弯矩值的关系与基桩所处位置有关,并非简单的双折线关系;在影响桩身弯矩因素中,软土层力学性质对桩身弯矩影响较桩身模量更为明显;桩在受轴向力和侧向力耦合作用下,桩基础的承载力会有所提高,但不明显.  相似文献   

6.
《公路》2017,(12)
以门式双排桩为例,运用有限元数值软件,研究了水平向和竖直向地震共同作用下双排桩边坡的破坏形态和受力性状。三维模型中,土体采用弹塑性本构模型,桩假定为线弹性,桩土之间设置接触单元。通过研究,得出如下结论:(1)双向地震荷载作用下,桩身受力最大值出现时刻为4.66s处;桩身弯矩沿桩身向下呈S型布,桩身剪力沿桩身向下呈抛物线型分布。(2)随着地震荷载的逐渐增大,桩身最大弯矩剪力值亦逐渐增大;当地震荷载从0.4g增大至破坏前工况时,动力作用下附加弯矩剪力增幅急剧增大。在整个过程中,后排桩弯矩剪力最大值始终大于前排桩受力最大值。(3)双向地震荷载作用下,随着地震荷载的逐渐增大,边坡最大土体位移从静力作用时的46.3mm增大到0.4g时的51.6mm;同一排桩桩顶与桩顶之间土体位移也逐渐增大,从抗滑桩之间滑移的趋势越明显,边坡越不安全;等效塑性应变分布带从坡顶附近滑带处扩展到边坡滑带中下部,坡顶附近的最大塑性应变值逐渐增大,从静力作用时的0.04增大到0.10,趋近临界状态。  相似文献   

7.
为建立能考虑桩土滑移特性和桩间土非均匀压缩变形特征的路堤下刚性桩复合地基沉降计算方法,以均布荷载下等桩长刚性桩复合地基中单桩等效加固单元体为研究对象,基于桩土相互作用的上部负摩阻塑性区、中部协调变形弹性区和下部摩擦承载塑性区三区段模式,采用剪切刚度和极限摩阻力随法向应力变化的等单位长度极限剪切位移理想弹塑性模型,建立了弹性区非线性和塑性区非均匀的桩侧摩阻力分布模型;考虑桩土滑移特性及桩间土非均匀压缩变形特征,根据单元体桩土荷载传递微分方程,导出了表征路堤下刚性桩复合地基性状的沉降和桩土应力比的解析表达式,分析了路堤荷载及垫层柔度系数对沉降和桩土应力比的影响。研究结果表明:沉降随路堤荷载及垫层柔度系数的提高而增大;桩土应力比随垫层柔度系数的增加而减小,随路堤荷载的提高呈先增大后减小的变化趋势,据此提出了采用最大桩土应力比进行路堤下刚性桩复合地基承载力及沉降设计的技术原则。  相似文献   

8.
侧向约束桩桩身弯矩问题比较复杂,该文采用室内模型试验研究含桩地基重复加卸载过程中侧向约束桩桩身弯矩特性,结果表明:1含桩地基重复加、卸载过程中,侧向约束桩桩身弯矩沿深度先增大、后减小,有1个峰值(首次加载有2个峰值),峰值出现在0.37倍埋置桩长附近;2桩身弯矩随含桩地基加、卸载而相应增、减。重复加、卸载到相同荷载时,桩身弯矩随加、卸载次数增加而减小;3首次加载达到P-s曲线拐点荷载时,弯矩增长缓慢,第2~4次加载到P-s曲线拐点荷载的前级荷载时,弯矩增长缓慢。说明加载到一定程度时,桩间土作用恒定,桩体作用逐渐发挥,桩体抑制了侧向约束桩弯矩的增长。侧向约束桩弯矩受含桩地基桩间土控制。试验结果为含桩地基侧向约束桩的设计提供了依据。  相似文献   

9.
刚性桩-半刚性桩-土工格栅是加固路基工程的一种有效方法,与传统桩网结构路基相比,桩-土相互作用更为复杂。为分析其承载特性,尤其是刚性桩桩身长度、桩径、桩间距和土工加筋材料及其种类对路基沉降和桩土应力比的影响规律,研究了复合路基加固优化设计方案,开展了在静力荷载下的室内模型试验和有限元方法理论计算。研究结果表明:刚性桩和半刚性桩的承载力均主要由侧摩阻力分担,但侧摩阻力发挥程度存在一定差异;路堤上部荷载在刚性桩-半刚性桩-土工格栅加固路基中沿中心桩体向边缘桩体传递,沿路堤行车方向向路堤横断面方向扩散;桩顶平面土体沉降在横断面上呈“W”分布,刚性桩能够显著减少其桩顶位置土体沉降量;在一定范围内,增加刚性桩的桩身长度、增大桩径、减小桩间距,能够减小7.12%~35.96%的路基土体变形和路基总沉降量,并提高路堤承载能力;在路堤中设置土工加筋材料,其与碎石垫层协同工作,可协调荷载在路基中重新分配,使其内部应力分布更为均衡;与土工格栅相比,土工格室具有三维立体结构,对减小路基内部土体沉降和调节荷载传递有更好的效果。在实际工程中,应根据上部荷载和地质条件,合理设计桩身长度、桩径和桩间距,选用合适的横...  相似文献   

10.
针对目前水泥土搅拌桩复合地基整体稳定性研究主要基于假定全部桩体发生剪切或者弯曲破坏的不足,采用有限差分法,对不同位置处桩体的受力特性,破坏模式以及复合地基整体破坏过程的开展方向进行研究,在此基础上,分析桩体弹性模量对桩体受力、破坏模式和破坏顺序的影响。结果表明:水泥土搅拌桩复合地基在路堤荷载作用下,会同时发生弯曲与剪切2种破坏模式,并且水泥土搅拌桩受力在空间分布上具有很大的不同;路堤荷载作用下,桩体的破坏具有渐进性,坡肩以外桩体更易发生弯曲破坏,破坏方向由坡脚首先发生,并向路堤中心逐渐延伸,而路堤内侧桩体更容易发生剪切破坏,破坏方向由路堤中心向坡脚延伸;随着桩体弹性模量的增加,桩体会由剪切破坏转变为弯曲破坏;低模量水泥土搅拌桩复合地基会首先发生内部剪切破坏,之后坡脚处发生弯曲破坏;高模量水泥土搅拌桩复合地基会先于坡脚处发生弯曲破坏,随后在路堤中心发生剪切破坏;桩体弹性模量的提高会增加桩体抗弯刚度,使其承担更大的弯矩,更容易发生弯曲破坏。  相似文献   

11.
施工不当或者侧向堆载、开挖常常导致桩身倾斜,扶正难度较大,且目前对倾斜桩复合地基的变形性状缺乏相关研究,其可能导致新的工程病害,基于此,设计模型箱和加载装置,对竖向重复加卸载下倾斜桩复合地基变形规律开展试验研究。结果表明:循环加载过程中,倾斜桩顶及其复合地基沉降和侧移均随荷载增大而增大,其增长率随荷载增大而增大、随加载次数增大而减小;卸载过程中,卸载初期的倾斜桩顶及其复合地基沉降和侧移变化不明显,最后1~2级低压力时才出现弹性变形;相同荷载作用下,桩顶沉降量随倾斜角增加而增大,倾斜桩存在"沉降临界倾斜角"(试验前3次加卸载循环其值为6°),随土体密实度提高而降低,倾斜角小于该临界值时,倾斜对桩的沉降影响不大,反之,桩顶沉降量随倾斜角增加而快速增大;倾斜桩存在"侧移临界倾斜角"(试验为9°),为侧移峰值对应倾斜角;倾斜角度小于该临界值时,桩顶侧移随倾斜角增大而增大,反之,桩顶侧移随倾斜角增大而减小,"侧移临界倾斜角"大于"沉降临界倾斜角";相同荷载作用下,倾斜桩复合地基的沉降大于倾斜桩沉降,而侧移比倾斜角6°桩大,比倾斜角12°桩小,桩身倾斜时,倾斜桩与复合地基的侧移量远比其沉降量小,但是侧移比沉降更为敏感。工程中,应尽量减少桩身倾斜,降低倾斜桩及其复合地基的沉降量和侧移量。  相似文献   

12.
施工不当或者侧向堆载、开挖常常导致桩身倾斜,扶正难度较大,且目前对倾斜桩复合地基的变形性状缺乏相关研究,其可能导致新的工程病害,基于此,设计模型箱和加载装置,对竖向重复加卸载下倾斜桩复合地基变形规律开展试验研究。结果表明:循环加载过程中,倾斜桩顶及其复合地基沉降和侧移均随荷载增大而增大,其增长率随荷载增大而增大、随加载次数增大而减小;卸载过程中,卸载初期的倾斜桩顶及其复合地基沉降和侧移变化不明显,最后1~2级低压力时才出现弹性变形;相同荷载作用下,桩顶沉降量随倾斜角增加而增大,倾斜桩存在“沉降临界倾斜角”(试验前3次加卸载循环其值为6°),随土体密实度提高而降低,倾斜角小于该临界值时,倾斜对桩的沉降影响不大,反之,桩顶沉降量随倾斜角增加而快速增大;倾斜桩存在“侧移临界倾斜角”(试验为9°),为侧移峰值对应倾斜角;倾斜角度小于该临界值时,桩顶侧移随倾斜角增大而增大,反之,桩顶侧移随倾斜角增大而减小,“侧移临界倾斜角”大于“沉降临界倾斜角”;相同荷载作用下,倾斜桩复合地基的沉降大于倾斜桩沉降,而侧移比倾斜角6°桩大,比倾斜角12°桩小,桩身倾斜时,倾斜桩与复合地基的侧移量远比其沉降量小,但是侧移比沉降更为敏感。工程中,应尽量减少桩身倾斜,降低倾斜桩及其复合地基的沉降量和侧移量。  相似文献   

13.
高速公路碎石桩复合地基加固数值模拟   总被引:2,自引:0,他引:2  
通过数值模拟分析了高速公路碎石桩复合地基在桩体施工、路堤填筑、运行期全过程和地震动荷载等作用下的受力问题。计算结果表明:碎石桩在路堤的填筑和运行期中起到明显的排水固结作用,当桩长大于6m后复合地基中的孔压最大值变化较缓慢;在桩长大于10m后路堤底面的沉降量和坡脚的水平位移量变化均会较小。地震荷载作用下路堤顶部的水平向加速度峰值较底面更大;在碎石桩加固范围内,复合地基的水平刚度大于天然地基,而在整个地基内,复合地基的竖向刚度均大于天然地基,在地基刚度较大的情况下位移最大值较大;天然地基在路堤坡脚下方、路堤边坡等位置较易发生液化,经过碎石桩加固后降低了地基液化的可能性。  相似文献   

14.
微型桩-承台-挡墙组合结构作为一种新型支挡结构,其受力变形特性研究尚不完善。文中结合某临水路堤支挡工程,采用ABAQUS有限元软件建立微型桩-承台-衡重式挡墙加固路堤三维数值模型,模拟该结构各组成部分受力与变形特性,分析不同桩间距、桩排距和填土内摩擦角对微型桩内力与变位的影响。结果表明,墙体整体向外侧移动并向内侧轻微转动,墙底位移大于墙顶位移,土体产生的水平应力主要集中在衡重台附近;承台与微型桩连接处产生明显应力集中现象;微型桩水平位移沿桩身逐渐减小,桩体表现出主动防护作用,在桩顶出现一定范围轴向拉力分布,桩身弯矩呈勺子形,峰值出现在土层分界面处,桩身剪力方向与滑坡方向相同,上部荷载的影响使滑面以上桩身剪力变化很小;合理的桩间距为5~6倍桩径,排间距在5倍桩径时桩身受力情况最好,填土内摩擦角超过30°时桩身受力与变形变化不明显。  相似文献   

15.
以某沿海铁路软土地基处理工程为依托,对桩网复合地基桩身受力特性进行了室内模型试验,得出了桩身轴力随着路堤填土荷载的增加而增大,随着桩间距的加大,桩身中性点下移;桩土应力比随着路堤填土荷载的增加而增大,随着桩间距加大明显增大等结论,为工程设计提供了理论参考依据。  相似文献   

16.
地面超载作用下双排桩结构计算分析   总被引:1,自引:0,他引:1  
基于《基坑工程手册(第二版)》中的内容,参照Rankine土压力理论,考虑地面超载作用并结合具体工程实例,推导出考虑地面超载作用土压力分布模式。结合双排桩前后排桩的土压力分配模型,并采用荷载结构法,利用midas计算软件对双排桩进行了结构计算,得出双排桩水平位移和弯矩,对双排桩的设计有一定的指导意义。  相似文献   

17.
建立了填土荷载对邻近桩排作用的三维有限元模型,分析桩顶边界条件和桩-土接触变化时桩基的不同性状,探讨了桩-土间土拱效应,分析了桩身挠曲、桩侧土压力和桩身轴力同填土荷载之间的变化规律。结果表明,填土荷载作用下,桩身挠曲与填土荷载成非线性关系,可以用三折线模型来模拟;桩顶自由时,桩前的土压力介于朗肯主动土压力和被动土压力之间,呈非线性分布。同种土中,桩侧土压力沿桩身呈线性分布,但比Ito理论和沈珠江理论求得的极限土压力都小。桩-土间设置接触单元能更实际地模拟桩基负摩擦力。所得结论对研究被动桩桩-土相互作用以及桥台桩基的设计和施工提供参考。  相似文献   

18.
运用自行研制的桩-土动力相互作用模型试验装置,采用数字式变频仪控制输入荷载的频率,通过不同刚度系数的弹簧获得不同荷载级别,对支盘桩模型试件进行了荷载试验,分析了不同工况下桩身弯矩变化趋势及桩侧土压力变化状况。借助Abaqus软件对试验模型进行了数值模拟,对土体采用Mohr-Coulomb弹塑性本构模型,桩-土相互作用的界面模拟采用接触面单元实现,考虑初始应力的影响,考虑桩-土间的脱开和滑移。分析结果表明:随着激振频率的增大,支盘桩的动力响应在整体上有减小的趋势且水平动承载力有所提高,承力盘设置在距离土体表面较近部位有利于支盘桩的水平动承载能力的提高;水平振动荷载作用下,支盘桩能与土体形成刚度较大的共同作用体系,与直径桩相比具有更高的抗变形能力,其承载力及变形特性受激振荷载大小、激振频率大小、承力盘位置、桩周土性状等因素的影响。  相似文献   

19.
随着刚性桩复合地基在土木工程中的广泛应用,其抗震性能越来越受到人们的关注,而复合地基中桩身动力响应是确定其抗震能力的关键。为此依据相似理论,设计制作出一套主要由钢制砂箱、砂土以及比例为1∶10的3×3群桩模型组成的试验装置。将装置置于伺服加载系统下进行拟动力试验,按照相关规范输入地震波加速度时程并施加上部荷载,获得不同工况下刚性桩复合地基桩身应力应变响应结果。试验结果表明:①各桩最大剪力均发生在桩顶处,对比不同位置桩的剪力,角桩剪力响应值最大;②各桩最大弯矩值均发生在Z/L=0.3~0.43的区间内,对比不同位置桩的弯矩,角桩的桩身弯矩响应值大于边中桩,而边中桩又大于中心桩;③保持地震波的加速度峰值不变,增大施加的上部荷载,剪力和弯矩响应值会有比增大加速度峰值更大的增加幅度。  相似文献   

20.
宋剑  张蛟  成进科  尹培杰  晏长根 《公路》2022,(4):118-124
通过室内模型试验研究了加载过程中桥梁桩基与抗滑桩桩顶位移、桩身应变、桥梁桩基前后土压力、抗滑桩桩前土压力的变化,得到两者的受力变形特性,并确定了模型试验中桥梁桩基和抗滑桩的破坏模式。研究表明,两者桩身弯矩分布均为抛物线形式分布,抗滑桩与桥梁桩基最大弯矩均位于岩土交界面与滑动面之间;两者桩基破坏面也均位于岩土交界面与滑动面之间;抗滑桩与桥梁桩基滑动面以上段桩前土压力分布均为倒三角形分布形态,在滑动面处土压力基本为0,桥桩桩后土压力分布成“S”形分布,压力峰值位于滑动面下方及桩顶处;抗滑桩先于桥梁桩基发生破坏,下滑力主要由抗滑桩承担,随着下滑力的增加,抗滑桩承担荷载比例增大;抗滑桩与桥梁桩基桩顶水平位移变化规律基本保持一致,在加载初期桥梁桩顶水平位移变化幅度小,随着荷载的增加其变化幅度逐渐增大,两桩之间相互作用越加显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号