首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为研究斜拉桥不同方案的H形混凝土桥塔在横桥向地震作用下的破坏模式,以某双塔斜拉桥(桥塔采用H形钢筋混凝土塔)为背景,设计制作2个缩尺比为1/20的全桥模型(桥塔分别采用强柱弱梁和强梁弱柱方案)进行振动台试验,观测桥塔破坏过程,测量桥塔基本周期变化及桥塔加速度和位移响应。结果表明:随着地震激励强度的增强,强梁弱柱设计的桥塔经历弹性阶段、裂缝开展阶段、塔柱保护层混凝土剥落及塔柱混凝土压碎4个阶段,且桥塔破坏时塔顶残余位移较小;与强柱弱梁设计相比,强梁弱柱设计的桥塔可以更好地控制塑性发展位置,并充分发挥桥塔塔柱的非线性耗能能力,减小桥塔下部基础的抗震需求。  相似文献   

2.
鹦鹉洲长江大桥设计为三塔四跨钢-混结合加劲梁悬索桥,跨度布置为(200+2×850+200)m,两主跨主缆跨度均为850m,主缆矢跨比为1/9,边跨主缆跨度均为225m。三塔不等高,中塔为钢-混混合结构,高152m;边塔为混凝土结构,高126.2m。桥塔横向均为框架结构,塔柱之间均设置上下2道横梁。中塔混凝土下塔柱纵向采用台阶式的I形结构,钢上塔柱纵向采用人字形结构;边塔纵向采用I形塔结构。桥塔塔柱根据位置的不同分别采用单箱单室和单箱三室截面;横梁采用预应力混凝土结构。桥塔施工采用泵送混凝土工艺。分别对桥塔进行稳定及纵、横向静力计算分析,结果表明结构强度、刚度、稳定性均满足规范要求。  相似文献   

3.
G3铜陵长江公铁大桥主桥为主跨988 m斜拉-悬索协作体系桥。江北、江南侧桥塔塔高分别为228.5、222.5 m,结构尺寸大,受力复杂,考虑桥塔受力、施工便捷性及主缆与斜拉索面协调布置等,确定采用C60混凝土门形桥塔。桥塔由上、下塔柱和上、下横梁组成,塔柱和下横梁为单箱单室截面,上横梁为开口槽形截面,索塔锚固区采用钢锚梁+混凝土齿块组合的索塔锚固结构,桥塔顶部主索鞍局部承压区采用间接钢筋网片加强并预留索鞍预埋件的布置空间。设计过程采用BIM技术优化局部设计细节,钢锚梁及钢牛腿等钢结构和混凝土结构外表面均采用防腐涂装体系进行耐久性设计。采用MIDAS Civil软件对桥塔整体受力进行分析,并对槽形断面上横梁基于经典理论、规范验算、实体有限元模型论证其结构安全性;基于ANSYS板壳有限元模型,研究不同板厚下钢锚梁锚下加劲板剪应力集中系数,以指导钢锚梁加劲板设计。桥塔塔柱采用支架法和爬模法施工,上、下横梁均采用支架法与塔柱异步施工。  相似文献   

4.
包银铁路乌海黄河特大桥主桥为(80+80+260+80+80) m钢-混混合梁斜拉桥,桥位处于Ⅷ度震区。为确定受力合理、造价经济的桥塔造型,结合抗震需求,对H形塔、门形塔、井形塔及上塔柱内收的井形塔4种桥塔造型方案进行结构内力与经济性对比分析,最终选择兼顾受力、经济和美观的H形塔方案。H形桥塔采用混凝土结构,塔高101 m,其上、中塔柱及上横梁采用单箱单室截面,下塔柱及下横梁采用单箱双室截面,桥塔横桥向宽24.5 m,桥面以上有效塔高73.5 m,高跨比为0.283;索塔采用环向预应力锚固,环向预应力采用缓粘结预应力钢绞线、井字形布置。对H形桥塔进行施工、运营阶段及地震工况下的计算分析,结果表明:桥塔结构强度、抗裂性、稳定性及抗震性能均满足规范要求。  相似文献   

5.
黄冈公铁两用长江大桥主桥为主跨567 m的钢桁梁斜拉桥,桥塔为H形混凝土结构.该桥桥塔塔柱采用液压爬模施工;下横梁采用落地式支架施工,与下塔柱节段混凝土同步浇筑;中塔柱施工时设置2道临时横撑,以改善塔柱施工阶段的受力;上横梁采用梯形桁架施工,与塔柱混凝土异步施工,上、下横梁混凝土均分2层浇筑.采用MIDAS有限元软件建模对桥塔施工过程进行分析,结果表明:上、下横梁混凝土分层浇筑时混凝土应力满足规范要求,且可有效降低现浇支架荷载;临时横撑的设置保证了施工阶段桥塔应力及位移均满足要求;上横梁梯形桁架支点处塔柱局部应力满足要求.  相似文献   

6.
正2018年4月10日,武汉青山长江大桥南岸桥塔成功封顶(见图1)。武汉青山长江大桥主桥为双塔双索面全飘浮体系斜拉桥,主跨938m,桥面总宽48m,南岸桥塔高271.5m。该桥桥塔采用无下横梁A形结构,塔柱顺直到底,下塔柱不内收。桥塔采用C55混凝土,全塔包括上塔柱、中塔柱、下塔柱、上塔柱合龙段段、上横梁  相似文献   

7.
为研究花瓶形桥塔横梁位置对结构受力和景观的影响,建立独塔双索面混合梁斜拉桥整体模型,分析不同横梁设置方式下桥塔结构的受力状态,并考察全桥景观效果。结果表明,在上塔柱与中塔柱的交点处设置1道横梁,可减小塔柱的计算长度,防止塔柱发生失稳破坏,并且可降低横梁及塔柱受力,优化结构尺寸,实现结构受力与桥梁景观的协调统一。  相似文献   

8.
工程中常采用的斜拉桥横向固定体系会增大桥墩、桥塔及其基础的抗震需求,从而增大斜拉桥在地震作用下的损伤破坏风险。为解决这一问题,以已研发的桥梁新型横向钢阻尼器为减震耗能装置,采用振动台试验方法,研究大跨度斜拉桥横向减震体系在近、远场地震作用下的减震效果。以苏通大桥为背景,设计1/35几何相似比的斜拉桥全桥试验模型,并分别进行横向减震体系和传统的横向固定体系的振动台试验。其中,将钢阻尼器与滑动型球钢支座并联布置于桥墩处、钢阻尼器布置于桥塔处形成横向减震体系。基于试验结果进行减震体系的减震行为分析。研究结果表明:在近、远场地震作用下,减震体系均能显著地减小主梁传递给桥墩和桥塔的地震力,其中墩梁、塔梁连接横向传力均减小50%以上,且将主梁位移限制在可接受范围内;减震体系也显著减小了塔身位移、曲率以及墩底曲率需求,其中,塔底截面曲率平均减小了34%,近塔辅助墩墩底曲率平均减小了67%;钢阻尼器拥有饱满的滞回曲线,但其滞回特性与地震输入有关;相对于支座的摩擦耗能,钢阻尼器的耗能能力更显著;在带有速度脉冲的近场地震作用下,钢阻尼器以及支座的位移响应具有明显的脉冲特点。  相似文献   

9.
鄂东长江公路大桥桥塔设计   总被引:6,自引:2,他引:4  
鄂东长江公路大桥主桥为主跨926 m的半漂浮体系双塔混合梁斜拉桥,桥塔采用"凤翎"式钢筋混凝土结构,由下塔柱、下横梁、中塔柱、中上塔柱连接部及上塔柱组成,采用C50混凝土.采用MIDAS 2006桥梁综合程序和桥梁博士3.0程序,按三维空间框架结构分裸塔阶段、最大单悬臂阶段和使用阶段对桥塔进行结构计算,并对下塔柱(含下横梁)和中上塔柱连接段进行局部仿真分析,结果表明桥塔的应力、强度和刚度均满足规范要求.桥塔施工分为下塔柱、下横梁、中塔柱、上塔柱和塔顶结构等施工阶段,介绍桥塔施工要点.  相似文献   

10.
李刚 《桥梁建设》2015,(2):94-98
万州长江三桥为双塔混合梁斜拉桥,跨径布置为(4×57.5+730+4×57.5)m。桥塔采用具有欧式建筑风格的钻石塔型,既减小了水下基础规模,又与当地建筑相得益彰。桥塔由上、中、下塔柱和下横梁构成,南塔高248.12m,北塔高208.2m,两塔下横梁以上保持一致。由于地形的限制,南、北塔下塔柱高度相差悬殊,为充分考虑两塔刚度差的影响,直接在全桥总体模型中进行桥塔分析。采取3项措施(对下横梁进行分节段浇筑、优化下塔柱与下横梁截面及对下塔柱增设竖向预应力)有效解决了北塔下塔柱与下横梁形成的横向框架刚度过大的难题。采用横向框架杆系模型与节段细部实体模型结合的方法,确定了理想的索塔锚固区预应力布置形式。受力分析表明,桥塔各构件均满足规范要求。  相似文献   

11.
大岳高速洞庭湖大桥主桥为(1 480+453.6)m双塔双跨钢桁架悬索桥,桥塔采用门式框架结构,君山侧桥塔下横梁采用单箱单室预应力混凝土结构,高7.0~17.0m,顶面宽10.793m。针对该桥桥塔下横梁结构特点和施工难点,从施工可行性、安全性、经济性以及工期等方面,对塔梁同步、异步施工方案进行比选,确定采用塔梁异步施工方案。塔柱正常爬模施工,待施工塔柱至5号节段,在下横梁与塔柱相交截面位置预埋下横梁钢筋及预应力系统,同时搭设下横梁落地施工支架,塔柱施工过下横梁位置后,进行下横梁异步施工。下横梁施工支架由钢管桩落地支撑、型钢拱形桁架及底模三部分组成。下横梁与塔柱结合面连接钢筋采用Ⅰ级接头质量标准全断面接头。施工中还采取了预应力线形控制、塔柱稳定性及塔柱根部应力控制、混凝土裂纹控制等关键技术措施。  相似文献   

12.
常泰长江大桥主航道桥为主跨1 176 m的公铁合建双塔斜拉桥,由于跨度和主梁自重均较大,该桥桥塔具有塔高、体量大、索力大、塔端锚固构造及施工较为复杂的特点。根据桥塔结构特点,开展桥塔方案、索塔锚固方案等一系列研究,创造性地提出采用钢-混混合空间钻石型桥塔(简称SCDT)和钢箱-核芯混凝土组合索塔锚固结构(简称SCAS)。空间钻石型桥塔将平面钻石形桥塔方案的中、下塔柱沿纵向分解形成框架结构,能大幅提高桥塔纵向刚度及斜拉索利用效率、极大地减小桥塔在施工和使用期可能出现的非受力方向开裂风险。钢箱-核芯混凝土组合索塔锚固结构将核芯混凝土布置在截面中性轴位置,主要用于承受上塔柱的轴向压力,外围钢箱结构承受弯矩,该锚固结构能充分发挥钢和混凝土材料的结构力学性能,且景观效果好、传力途径明确、受力合理。  相似文献   

13.
混凝土桥梁结构非线性地震损伤演化   总被引:5,自引:2,他引:5  
采用基于断裂能的损伤变量表达式,以单位体积材料当前耗能与断裂能的比值定义损伤变量,考虑了混凝土的拉压异性效应。引入了地震损伤的整体演化指标,通过有限元方法利用材料塑性损伤模型模拟桥梁结构在地震激励下的非线性损伤演化过程。数值计算过程中考虑了混凝土后继屈服的随动强化效应,采用损伤型本构关系及相应的Drucker-Prager型屈服函数,并通过算例验证了混凝土结构的非线性地震损伤特性。  相似文献   

14.
为了探讨悬索桥超高桥塔的刚度和风致响应问题,围绕顺桥向A字形布置混凝土桥塔(不同底部张开量)和顺桥向独柱形布置混凝土桥塔(不同塔柱截面)展开研究。利用有限元分析软件建立了2种类型桥塔的裸塔自立状态有限元模型,计算对比了桥塔刚度以及静风响应,同时采用时域分析方法计算桥塔的抖振响应,对比分析了在桥塔横向构造形式一定的前提下,不同类型方案对超高桥塔刚度和风致响应的影响。分析结果表明,顺桥向A字形桥塔的整体刚度较独柱形桥塔大;在顺桥向静风作用下,独柱形桥塔塔顶位移比A字形桥塔大得多;在顺桥向脉动风作用下,独柱形桥塔塔顶抖振位移响应的脉动程度远大于A字形桥塔。  相似文献   

15.
厦漳跨海大桥南汊主桥为主跨300 m的双塔结合梁斜拉桥.对H形、钻石形、菱形和宝瓶形等塔形进行比选,最终确定该桥桥塔采用改进的H形钢筋混凝土桥塔(上塔柱竖直,中塔柱倾斜,下塔柱外侧面竖直、内侧面倾斜).桥塔塔柱采用矩形空心截面,在塔底设置高4.0m的实体段;钢锚梁采用开口箱形截面;塔柱横梁为全预应力混凝土结构,箱形截面;承台采用哑铃形截面;桥塔基础采用钻孔灌注桩群桩基础.为检验桥塔受力,对裸塔和全桥进行整体计算,并采用ANSYS和MIDAS分析桥塔关键部位局部受力.分析结果表明,桥塔各部位受力均满足规范要求,并有一定的安全储备.  相似文献   

16.
《公路》2021,66(6):166-171
为了对超高墩斜拉桥混凝土桥塔爆炸动力响应及损伤评估进行研究,以平塘大桥超高混凝土桥塔作为研究对象,采用ANSYS/LS-dyna建立有限元模型进行数值模拟,对超高混凝土桥塔在爆炸冲击作用下的局部损伤进行了分析。通过对比3种等级汽车炸弹在近塔处爆炸时的结构响应,发现桥塔响应集中在爆点局部,整体响应很小;提出一种钢筋混凝土构件损伤程度评估的P-I曲线方法来评估钢筋混凝土构件爆炸冲击损伤状态;结合桥塔爆炸集中响应和钢筋混凝土构件爆炸冲击损伤状态评估,综合成本等控制因素,为同类型桥梁研究提供参考。  相似文献   

17.
襄樊汉江三桥主桥为主跨310 m的预应力混凝土双塔双索面斜拉桥,桥塔采用无上横梁双直立塔柱,主梁横向宽度达35 m,采用分离式混凝土双边箱结构,斜拉索为平行索面.为实现无上横梁双直立塔柱的景观效果,设计采取多种措施以弥补该体系对大桥动力特性特别是横向稳定性的削弱.从材料、构造措施方面对桥梁耐久性进行设计,以保证大桥的长...  相似文献   

18.
昌九高铁扬子洲赣江公铁大桥西支主桥采用竖琴形索面箱桁组合梁斜拉桥,跨径布置为(48+144+320+144+48) m。根据桥梁结构特点,针对花瓶形、H形和钻石形桥塔方案,从结构受力、景观效果、施工难度、经济性等方面进行比选,最终采用适应宽主梁、竖琴形索面的花瓶形桥塔。2座桥塔高度分别为143.5 m和147.1 m,采用C50钢筋混凝土结构,由上、中、下塔柱组成,塔柱圆弧过渡,设上、下2道横梁,下横梁采用预应力混凝土结构,上横梁由2道反向圆弧的预应力混凝土小横梁和中间的装饰性钢结构共同组成“昌”字造型。索塔锚固区采用钢锚箱锚固体系与预应力锚固体系相结合的方式。桥塔下塔柱采用翻模法施工,中、上塔柱外部采用爬模法施工、内部采用翻模法施工。对桥塔进行整体静力、局部应力、稳定性及抗震分析,结果表明桥塔强度、刚度、稳定性及抗震性能均满足规范要求。  相似文献   

19.
商合杭铁路芜湖长江公铁大桥主桥为主跨588m的双塔双索面矮塔箱桁组合梁斜拉桥,2号和3号主墩均采用门形钢筋混凝土桥塔,塔高分别为155m和130.5m。桥塔设上、下2道横梁,下塔柱外倾,上塔柱内倾。该桥塔柱采用液压爬模分节施工,在两侧上、下塔柱间分别设置钢管横撑和临时对拉钢绞线;下横梁采用落地支架法施工,上横梁采用"牛腿+支架"法施工,上、下横梁混凝土与塔柱同步浇筑;索塔锚固区采用钢锚梁拉索锚固体系与预应力锚固体系相结合的方式锚固,塔柱预应力采用"#"形布置,利用定位支架精确定位钢锚梁。在施工期间,采用"零状态"测量+相对设站法定位等措施控制塔柱线形;并采用高性能混凝土抗裂技术防止大体积混凝土表面开裂。  相似文献   

20.
为了解斜拉拱式协作体系桥梁地震响应规律和特点,指导该类桥型抗震设计与研究,以大连市翔凤河桥——(40+90.5)m斜拉拱式协作体系桥为研究对象,采用有限元软件建立该桥三维有限元模型进行动力性能分析,利用地震反应谱和时程分析方法分析三向地震作用下结构的位移和内力,以及结构非线性对地震响应的影响。结果表明:斜拉拱式协作体系桥梁的动力性能主要振型符合无背索斜拉桥的特点;结构在纵向和横向地震作用下的位移和内力均比竖向地震作用大;在纵、横向地震作用下桥塔于塔梁拱交接位置产生最大内力,拱肋于1号墩处拱脚位置产生最大内力,应特别重视该桥塔梁拱结合处的桥塔和拱肋截面的抗震设计;结构非线性对该桥地震响应的影响比较明显,地震分析计算时应考虑结构非线性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号