首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
针对某盾构隧道下穿既有地铁暗挖隧道的施工力学行为进行了三维有限元数值模拟分析。研究结果表明:在盾构推进至距既有隧道边缘3 m前,隧道会发生隆起,且在此位置时隆起量最大,之后开始沉降,在盾构将要穿出既有隧道时,沉降增量最大;隆起量随盾构推力和既有隧道刚度增大而增大,而沉降量与之相反;盾构下穿时,既有隧道结构横截面上会产生扭转,扭转角的大小随盾构推力增大而增大,随既有隧道刚度增大而减小。为确保下穿过程上方隧道的结构安全和列车的正常运行,在距既有隧道边缘3 m时采取措施控制盾构推力和提高既有隧道周围土体的强度非常有效。  相似文献   

2.
新建盾构隧道下穿既有地铁线路施工时会引发交汇段地表沉降叠加,对既有地铁线路运营安全产生威胁。本文以成都砂卵石地层新建地铁6号线盾构始发段下穿既有3号线施工为例,针对盾构在始发端头下穿施工时存在的建压困难、沉降控制难度大、施工安全风险高等难题,采用了始发延长钢环密封保压、中盾注浆盾构间隙、辅助注浆纠偏、自动化实时监测等技术措施及管理手段,顺利通过下穿既有地铁。  相似文献   

3.
采用Flac3D有限差分法模拟地铁盾构区间隧道下穿既有综合管廊的施工过程。分析下部地铁盾构隧道在不同交角和不同盾尾注浆压力的工况下,对上部既有综合管廊单洞隧道变形的影响特点。计算结果表明:当注浆压力一定时,随着上下隧道相交角度的增加,轴线交点附近处的沉降值就越来越大,而影响的范围却越来越小,并且这种影响与上下隧道相交长度正相关,与相交面积二次相关;当交角不变时,在一定范围内,随着盾构隧道注浆压力的增加,上部综合管廊的沉降会逐渐减小,而随着盾构隧道注浆压力的等幅提升,沉降的变化值越来越小,即注浆压力对隧道沉降的改善越来越不明显。通过结果分析,可采用0.3 MPa的注浆压力下,交角范围为60°~75°的工况进行施工,以减少施工影响。  相似文献   

4.
黄土地区地铁盾构下穿铁路变形控制技术   总被引:1,自引:0,他引:1  
研究目的:黄土地区某城市地铁2号线盾构施工下穿既有陇海铁路线是一个盾构施工中的I级风险源,为保证地铁盾构施工安全下穿陇海线路,开展了盾构施工穿越既有铁路的变形控制技术研究,以为盾构安全施工提供技术支撑。研究结论:(1)黄土地区地铁盾构下穿既有陇海线路的地表沉降规律:不采取控制措施盾构施工时,路基右线隧道轴线正上方的沉降量为20.48 mm,左线隧道轴线正上方的沉降量为12.85 mm,左右线隧道的轴线上的沉降量均超出了沉降允许值;采取严格控制土压力、盾构匀速通过、严格控制注浆量、减少盾构推进方向的改变等减小地铁盾构下穿既有铁路施工风险的措施盾构施工时,右线隧道轴线正上方的沉降量为5.44 mm,左线隧道轴线上方的沉降量为4.95 mm,均小于变形允许值。(2)FLAC计算预测的变形规律与实际值基本一致,地表和铁路路基的变形量在允许范围内;减小地铁盾构下穿既有铁路施工风险的措施合理有效。(3)该研究成果可应用于黄土地区地铁盾构下穿铁路施工变形控制。  相似文献   

5.
为确保土压平衡盾构机下穿施工既有地铁运营隧道的安全,利用三维数值有限元软件精细化建模,考虑注浆压力和掌子面压力变化的影响,多工况模拟土压平衡隧道施工获得运营隧道变形规律。通过分析土压平衡盾构机下穿施工过程中的位移响应,判定上部交叉运营地铁隧道所受影响并给出合理的注浆压力和掌子面压力参数。工程实际中利用莱卡TS30监测机器人建立了自动监测系统,对运营隧道的位移进行了监测。根据计算与监测结果得到:(1)掌子面压力越大,既有隧道沉降越小,运营隧道左线仰拱沉降最大,仰拱最大沉降范围为3.4~3.7 mm;新建隧道左线线路中线所对应的地表最大沉降范围在1.9~2.1 mm之间。(2)注浆压力越大,既有隧道沉降越小,左线拱顶最大沉降范围在2. 6~3. 6 mm;新建隧道左线线路中线所对应的地表最大沉降范围在1~2. 1 mm。(3)盾构隧道在下穿运营地铁1号线过程中,邻近运营隧道拱顶最大沉降范围在2~3.5 mm,远小于10 mm,可确保运营隧道安全。(4)采用选取的注浆压力0. 3~0. 36 MPa与土仓压力0. 1~0. 13 MPa下施工,盾构隧道穿过运营隧道后,运营隧道中股道沉降最大值为0.5 mm,轨道沉降值小于10 mm,符合要求,运营隧道安全。最后,提出了相应施工对策:在盾构下穿既有隧道施工时,应减少超挖、适当选取盾构施工参数、盾构快速通过近接区和实时监测反馈施工。  相似文献   

6.
盾构隧道难免会下穿既有构筑物。以新建某地地铁2号线区间双线盾构隧道下穿既有地铁1号线区间隧道为例,通过运用ANSYS有限元分析软件对土体注浆和未注浆情况下盾构施工进行模拟,得出土体在注浆的情况下既有结构的变形明显减小。最后将ANSYS计算结果与监测结果进行比较,两者相差不大,验证了模拟计算结果的正确性,为今后盾构隧道下穿既有结构的施工提供了借鉴和参考。  相似文献   

7.
南宁地区富水圆砾地层中新建隧道下穿既有隧道的相关研究目前较为匮乏.依托南宁地铁3号线金湖广场~琅西站区间盾构下穿既有1号线地铁隧道工程,对下穿区间段的盾构掘进参数进行研究.研究结果表明:3号线下穿既有1号线施工过程中部分掘进参数控制良好,既有1号线沉降控制在5 mm内;适当提高泥水仓压力能够降低既有隧道沉降的增速,同步注浆量和同步注浆压力的不足则会引起既有隧道沉降值增大;下穿施工时,掘进速度应控制在10~15 mm/min并应适当停机调整盾构机姿态,泥水仓压力应控制在0.2~0.22 MPa,预压值Pa应适量提高0.01~0.02 MPa,调整级差不应超过0.015 MPa,同步注浆量应控制在5~5.5 m3,后进行开挖或泥岩圆砾复合地层中应适量增加0.5~1 m3,同步注浆压力应控制在0.25~0.4 MPa,并根据地质情况优化注浆位置以保证注浆效果.  相似文献   

8.
为研究黄土地区盾构隧道近距下穿既有线的影响规律及控制标准,以西安地铁5号线盾构隧道下穿既有2号线隧道工程为背景,分析在既有隧道与下穿隧道竖直净距为盾构隧道管片外径0.2倍、0.4倍、0.6倍、0.8倍及1.0倍5种工况下的地表沉降和既有隧道在其与新建隧道正交截面上的拱顶及拱底位移、附加应力情况。由结果可知:随着既有隧道与新建隧道竖直净距的减小,地表和既有隧道的拱底拱顶位移均呈线性增大的趋势;地表沉降曲线与既有隧道拱顶沉降曲线呈单峰形态,而拱底位移曲线呈双峰形态,且左峰值小于右峰值;既有隧道在盾构过程中产生正弯矩,应力在盾构穿越其正下方时出现分化;应尽量避免竖直净距小于0.2倍洞径的双线盾构下穿,当采用0.4倍洞径竖直净距下穿时,应将新建隧道拱顶沉降值控制在13 mm以内。  相似文献   

9.
研究目的:为研究双线盾构下穿时既有地铁盾构隧道的沉降规律及控制措施,以北京地铁14号线隧道近距下穿地铁15号线隧道工程为依托,通过对既有隧道沉降的数值模拟,结合现场监测数据及盾构施工参数的分析,阐明既有隧道的沉降规律,总结控制沉降的盾构施工参数经验,验证沉降控制措施的有效性。研究结论:(1)既有隧道的沉降始于盾构刀盘距既有隧道1.5~2.0倍洞径处,在既有隧道前后1.1~1.3倍洞径范围变化最大,但受先后施工的二次扰动影响并不明显;(2)盾构掘进速度保持60~80 mm/min,合理且较高的顶推力、土仓压力、注浆量,可确保在快速通过穿越区域的同时抑制既有隧道的沉降;(3)通过注入双液浆、克泥效浆液对土层进行加固改良,设置聚氨酯隔离环,可减小既有隧道的后期沉降;(4)本研究成果可为盾构穿越施工影响下既有隧道的沉降控制提供借鉴。  相似文献   

10.
以西安地铁5号线平村站—阿房宫站区间下穿西户铁路工程为背景,通过研究分析盾构下穿过程中地表沉降特点,提出盾构施工中调整土仓压力、掘进速度、注浆参数等技术措施。监测结果表明,采取的控制技术措施可以有效减小地表沉降,保证盾构顺利穿越既有铁路。  相似文献   

11.
为研究砂土地层中盾构隧道超近距离下穿既有隧道变形控制措施,以西安地铁盾构区间隧道下穿地铁1号线出入段工程为依托,通过资料调研、数值模拟、现场试验和监控测量等方法,对既有隧道加固措施、盾构对地层适应性、掘进参数、隧道变形进行研究。结果表明:砂土地层盾构隧道超近距离下穿既有隧道,应对盾构进行专门设计,扩大刀盘开口率,配备专门的膨润土拌制和膨化系统,并避免在下穿影响范围内停机;数值计算和试掘进试验结果,盾构施工参数土仓压力为0.1 MPa,注浆压力为0.22 MPa,推力为10 000 kN,出土量为51 m^3/环,注浆量5~6 m^3/环;通过现场监测,盾构下穿过程中,既有地铁隧道轨道最大沉降及高差分别为6 mm和0.8 mm,符合规范要求,确保了地铁的安全运营,变形控制措施对既有地铁隧道作用十分显著。  相似文献   

12.
为了研究双线隧道盾构施工对周围土体的扰动规律及其控制措施,在讨论双孔平行隧道地表沉降计算公式在厦门地铁某区间隧道适用性的基础上,采用双孔平行隧道地表沉降计算公式、数值模拟及现场监测3种方法,揭示双线地铁隧道盾构施工引起的地表沉降分布规律和地表动态变形特性,分析影响地表沉降的施工控制参数的效果。结果表明:(1)双孔平行隧道地表沉降计算公式具有较好的适用性,双线隧道盾构施工完成后,地表形成非对称的"W"形沉降槽;(2)地表沉降本质上是盾构施工引起的土体损失累积造成的,在开挖面到达目标面时,实测地表沉降达到最终沉降值的45%;(3)设置合理的同步注浆、土舱压力和推进速度参数,可以有效控制地表沉降,建议增加同步注浆量作为控制地表沉降的首选措施。  相似文献   

13.
以广州轨道交通21号线金坑站—镇龙南站区间土压平衡盾构下穿均和村房屋群为工程依托,采用数值模拟方法研究盾构隧道侧穿房屋群基础沉降特性,对比分析不同隧道开挖顺序下房屋基础沉降响应规律,并结合现场实测数据进行对比分析,揭示软弱地层盾构隧道侧穿房屋群施工扰动特性。研究结果表明:(1)在软弱地层双线隧道侧穿既有建筑物时,优先施作受荷载作用显著侧隧道,可有效降低既有建筑物变形;(2)在软弱地层盾构隧道掘进过程中,地表既有建筑物产生的主要沉降位于隧道穿越既有建筑物前3倍洞径至穿越建筑物后6倍洞径范围内,在此区段内可加强监测力度,根据实际需求采取降低掘进速度或适当加大注浆量的控制措施来控制既有建筑物变形;(3)受软土地层特性和施工同步注浆浆液固化的影响,在盾构穿越监测点10 m左右监测点沉降达到最大,随着浆液强度的增大,存在沉降回弹现象。  相似文献   

14.
新建隧道盾构下穿施工对既有隧道影响的三维数值模拟   总被引:6,自引:2,他引:4  
采用三维有限元方法对新建隧道盾构下穿施工过程进行了动态模拟,分析了新建隧道盾构正交下穿施工对既有隧道位移、应力的影响;进而探讨了不同的隧道覆土厚度、隧道间相对距离及土体强度下,新建隧道盾构正交下穿施工对既有隧道位移的影响.结果表明:新建隧道盾构正交下穿施工引起既有隧道位移方向朝向新建隧道方向发展,既有隧道位移以纵向沉降...  相似文献   

15.
盾构法修建正交下穿地铁隧道对上覆隧道的影响分析   总被引:9,自引:0,他引:9  
方勇  何川 《铁道学报》2007,29(2):83-88
在地铁工程中,常采用盾构法修建正交下穿隧道,新隧道的掘进不可避免地对既有隧道产生影响。采用三维有限元方法对正交下穿盾构隧道施工进行模拟,分析新隧道动态掘进时既有隧道位移、变形和内力的变化规律。模型中考虑了盾构机与管片衬砌的相互作用,以及管片衬砌结构的横观各向同性性质。计算结果表明,新隧道施工时既有隧道将产生不均匀沉降、不均匀侧移和扭转,且在对称面上出现最大值。对称面上管片的变形与受力出现先“加载”、后"卸载"、再“加载”的特点,同时该处的纵向弯矩不断增大,并在隧道底部产生较大拉应力。本文所研究的内容可为类似工程的施工提供参考。  相似文献   

16.
陈利民 《铁道建筑》2020,(1):62-65,88
上海地铁15号线盾构隧道下穿上海南站咽喉区。通过方案比选、下穿工程影响数值模拟,形成了综合考虑施工条件和对车站咽喉区影响的线路方案。根据咽喉区列车通过能力,制定了列车限速和运营调整方案。制定地层斜向注浆加固方案,采用高性能全新土压平衡盾构机和新型相对质量密度大的单液浆减少车站咽喉区地表变形,并采用自动化连续监测和实时反馈的信息化施工方法。该技术措施将下穿咽喉区盾构施工中地表沉降控制在4.5 mm以下,可供类似工程参考。  相似文献   

17.
通过工程实践介绍了成都地铁4号线土压平衡盾构机切割二衬素混凝土过暗挖隧道下穿既有运营线的施工技术,明确了该技术的适用范围,详细介绍了过暗挖隧道的开挖及二衬施工、端头加固、盾构掘进、注浆的施工技术,保证了既有运营线路的安全,对今后盾构过暗挖隧道穿越既有线施工具有很好的参考和应用价值。暗挖隧道的结构形式不同于以往的盾构空推过暗挖隧道的结构形式,值得借鉴。  相似文献   

18.
矩形顶管施工引起的地表变形特征与圆形顶管或盾构隧道存在显著差异。为了明确浅埋矩形顶管施工过程中的地表沉降特征以及顶管施工对下方既有盾构隧道的影响,根据现场矩形顶管施工监测结果,分析矩形顶管施工过程中地表的变形规律,以及顶管下方既有盾构隧道的变形情况。传统的Peck公式适用于圆形顶管或圆形盾构隧道,因此采用改进的Peck公式来描述矩形顶管引起的地表变形特征;根据现场监测分析顶管施工引起的地表变形、管线变形和下卧隧道沉降规律。研究表明:改进的Peck公式相比于传统的Peck公式可以准确描述矩形顶管施工引起的地表变形规律;顶管施工引起地表和上方管线的沉降规律是一致的,但与下卧隧道的变形规律存在显著差别。  相似文献   

19.
同步注浆工艺作为盾构施工中的重要环节,其注浆效果对盾构掘进中的沉降控制与及时包裹管片起到重要作用。针对壁后同步注浆的作用进行分析,系统总结同步注浆浆液类型与要求,对比分析3种常用浆液优缺点,结合工程实际需求探讨浆液需求及发展方向。统计国内已建35个地铁盾构施工案例,分析地铁施工采用盾构机类型及管片尺寸,简要分析盾构隧道同步注浆中的热点问题并展开讨论。研究结果表明:浆液种类需根据地层条件进行选取,国内盾构隧道施工过程同步注浆采用单液浆(惰性浆液、可硬性浆液)较多,盾构隧道施工同步注浆双液浆开始逐渐推广,国外盾构隧道施工同步注浆已逐渐向双液浆转变;壁后注浆准确探测与评价对于注浆效果的反馈与地层变形敏感地区至关重要,相关研究有待进一步加强;在含水量大于30%的地层、渗透性极高地层、软弱不均地层且周围近距离穿越建(构)筑物,对沉降控制要求较高的工程中,建议采用双液浆同步注浆施工或辅以克泥效特殊浆液进行施工。  相似文献   

20.
以合肥地铁1号线葛望区间下穿三层框架结构为工程背景,运用MIDAS/GTS软件建立数值分析模型,模拟盾构掘进对上覆建筑物的影响。结果表明:横断面最大累计沉降值发生在两隧道对称轴线上,沉降槽基本呈正太分布曲线;纵向沉降曲线所呈现的规律与上部无结构荷载影响时基本一致;上部建筑结构沉降曲线包括3个平稳和2个剧变阶段,且二次沉降规律明显;上部建筑物荷载对沉降槽宽度及反弯点的位置影响不大,最终沉降会明显增大;地表最大沉降随偏心比e0的增大逐渐降低,当e0=1.5时,隧道的最大沉降与上部无结构荷载影响时基本一致,但沉降槽宽度相比而言有所增大;先掘进建筑物下伏隧道、增大注浆压力有利于控制上部建筑物的沉降变形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号