首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
桥梁温度跨度对双块式无砟轨道无缝线路的影响研究   总被引:1,自引:1,他引:0  
为研究桥梁温度跨度对桥上双块式无砟轨道无缝线路的影响,运用线板桥墩一体化模型,计算不同温度跨度下,分别采用常阻力和小阻力扣件时的钢轨纵向力、道床板纵向力、抗剪凸台纵向力、梁轨相对位移以及钢轨断缝,分析桥梁温度跨度对轨道结构强度与变形的影响。结果表明:(1)随着桥梁温度跨度的增加,钢轨伸缩、挠曲、制动附加力和梁轨相对位移均增大;道床板、抗剪凸台纵向力和钢轨断缝保持不变。(2)扣件阻力减小时,轨道结构纵向力均减小;但梁轨相对位移和钢轨断缝增大。(3)为保证钢轨强度要求,当桥上铺设常阻力扣件时,桥梁温度跨度限值可取135m;当桥上铺设小阻力扣件时,桥梁温度跨度限值可取250m。  相似文献   

2.
CRTSⅠ型板式无砟轨道梁端凸形挡台纵向力分析   总被引:1,自引:1,他引:0  
针对近几年大跨桥上CRTSⅠ型板式无砟轨道梁端半圆凸形挡台的剪切破坏现象,参考国内某连续刚构桥实际参数,根据桥梁梁端半圆形凸形挡台的配筋计算出凸形挡台的设计承载力,基于有限元方法,建立线-板-桥-墩一体化计算模型,计算分析在不同扣件阻力,桥梁温度跨度和桥墩线刚度等因素下的梁端半圆形凸形挡台受力。结果表明:扣件纵向阻力是梁端凸台剪切破坏的主要影响因素,随着扣件纵向阻力的增大,梁端半圆形凸形挡台所受纵向力也随之增大,当扣件纵向阻力达到17.0k N/m/轨时,凸形挡台所受纵向力将会超过凸形挡台的抗剪承载力,即发生破坏;桥梁温度跨度、桥墩线刚度、有无起制动力对梁端半圆形凸台所受纵向力影响很小。  相似文献   

3.
研究目的:目前的梁轨伸缩力算法较多使用常量阻力计算模型,当跨径很大时,有可能不存在有力学意义的解。为了得到准确的桥上无缝线路钢轨在温度作用下的伸缩力解析算法,解决桥梁温度跨度取值以及合理的纵向阻力选择问题,本文采用非线性纵向阻力模型,根据扣件进入塑性变形区的位置将无缝线路分成若干个区段,通过建立平衡微分方程组,求解得到钢轨位移及伸缩力。研究结论:(1)依照无缝线路规范设计条件,计算了不同纵向阻力、不同跨度桥梁上钢轨最大应力以及梁轨最大相对位移;(2)在不考虑制动力的情况下,可得出基于钢轨强度限值下不同纵向阻力对应的温度跨度限值;(3)以70 mm和90 mm作为断缝宽度限值,得出线路纵向阻力的最小取值分别为17 N/(mm·线)和13 N/(mm·线);(4)本文算法可为桥上无缝线路的桥梁温度跨度及线路纵向阻力的选择提供依据。  相似文献   

4.
为研究连续梁桥上有轨电车嵌入式轨道结构在温度荷载作用下的受力变形特性及影响因素,采用线性弹簧模拟梁轨相互作用,建立嵌入式轨道-桥-墩一体化有限元计算模型。以实际工况为例,确定伸缩工况下合理的连续梁两侧简支梁跨数,并探讨梁体温差、高分子材料纵向阻力、小阻力高分子材料铺设范围和桥梁支座布置方案对轨道结构伸缩受力和变形分布规律的影响。研究结果表明:对于多联连续梁桥,当计算伸缩工况时,可取连续梁两侧各5跨简支梁作为边界条件;随着高分子材料纵向阻力的增加,伸缩力逐渐增大,而轨板相对位移逐渐减小,故在设计嵌入式轨道桥上无缝线路时,应综合考虑轨道结构受力和变形的要求;针对本文工况,当从减小钢轨附加伸缩力的角度考虑时,应该选择在连续梁桥左边跨和相邻一跨简支梁上铺设小阻力高分子材料;当桥梁温度跨度较大时,可将连续梁相邻一跨简支梁的固定支座放置在连续梁桥的边墩处,从而使得连续梁桥温度跨度减小。  相似文献   

5.
由于中德两国桥上无缝线路纵向力计算中的线路纵向阻力取值差异较大,首先利用MATLAB软件编制桥上无缝线路纵向力计算程序,分别采用德铁规范的线路纵向阻力模型和中国线路阻力模型,结合实际工点进行计算,对比分析桥上无缝线路纵向力计算结果,建议我国桥上无碴轨道铺设小阻力扣件。  相似文献   

6.
研究目的:为对比桥上铺设不同无砟轨道时对应无缝线路受力规律,本文基于有限元方法及梁轨相互作用原理,分别建立大跨度桥上纵连板式、单元板式及双块式无砟轨道有限元模型,分析实测温度工况及制挠力耦合作用下,不同无砟轨道对应的无缝线路受力规律及桥梁理论最大温度跨度,并比较制动墩墩顶刚度、扣件阻力等参数对无缝线路受力及最大温度跨度的影响。研究结论:(1)相同桥梁温度跨度下,双块式无砟轨道钢轨附加应力最大,纵连板式无砟轨道钢轨附加应力最小,且纵连板式无砟轨道钢轨附加应力远小于铺设单元板式或双块式无砟轨道时对应钢轨附加应力;(2)采用常阻力扣件时,当制动墩墩顶刚度由1 500 k N/cm增大到8 000 k N/cm时,单元板式无砟轨道最大温度跨度由93.3 m增大到105 m,双块式无砟轨道最大温度跨度由60 m增大到75.8 m,而纵连板式无砟轨道钢轨附加应力受墩顶刚度的影响很小;(3)纵连板式无砟轨道对应桥梁最大温度跨度需同时考虑钢轨附加应力及墩顶纵向位移限值;(4)扣件阻力大小对单元板式及双块式无砟轨道钢轨附加应力影响较大,采用小阻力扣件后,两者对应最大温度跨度分别增大约1.5、2.0倍,小阻力扣件可以有效的减小单元板式及双块式无砟轨道钢轨附加应力;(5)本研究成果可为不同无砟轨道应用及对应桥梁跨度设计提供参考。  相似文献   

7.
考虑轨道与桥梁相互作用特点,建立桥上CRTSⅡ型板式无砟轨道空间力学模型,分析桥梁温度跨度对纵连底座板制动力和伸缩力的影响,根据不同桥梁温度跨度下的纵向力,按极限状态法对纵连底座板进行配筋设计。结果表明:当桥梁温度跨度小于482 m时,纵连底座板最大制动力随着温度跨度增加迅速增大,温度跨度超过482 m后纵连底座板的最大制动力趋于稳定;纵连底座板最大伸缩力随着桥梁温度跨度线性增大;纵连底座板配筋率增幅小于桥梁温度跨度的增幅。  相似文献   

8.
研究目的:大跨度混凝土桥上铺设无砟轨道和无缝线路是我国客运专线建设的关键技术之一,对桥梁和轨道工程都是一个严峻考验。对于长大混凝土桥上无缝线路,是否设置钢轨伸缩调节器是困扰长大混凝土桥上无缝线路设计的难题。本文对我国大跨度桥梁无砟轨道无缝线路设计进行研究分析。研究结论:通过对我国大跨度桥梁无砟轨道无缝线路设计研究分析和既有长大混凝土桥梁工点无砟轨道无缝线路运营情况现场调研发现;(1)铺设无砟轨道的大跨度混凝土桥梁温度跨度超过一定范围将引起轨道结构的病害;(2)通过在桥上采用小阻力扣件即减小桥上扣件的纵向阻力,可以降低钢轨最大纵向附加力及轨道结构的受力;(3)随着桥梁温差取值的增大,钢轨与桥墩受力及轨道和桥梁结构的变形都有明显增大;(4)必须加大大跨度桥上无缝线路监测的力度,加强无缝线路设计参数的试验研究。  相似文献   

9.
通过建立钢轨-轨道板-桥梁-墩台垂向耦合静力分析模型,研究伸缩工况、制动工况和挠曲工况对温度跨度的影响,并最终确定铺设CRTSⅠ板式无砟轨道的连续梁桥温度跨度极值。在此基础上对轨道结构和桥墩进行检算,结果表明当扣件纵向阻力调整为17.8 kN/m/轨时,凸台所受剪力刚好未超限。  相似文献   

10.
通过建立钢轨一轨道板一桥梁一墩台垂向耦合静力分析模型,研究伸缩工况、制动工况和挠曲工况对温度跨度的影响,并最终确定铺设CBTSI板式无砟轨道的连续梁桥温度跨度极值。在此基础上对轨道结构和桥墩进行检算,结果表明当扣件纵向阻力调整为17.8kN/m/轨时,凸台所受剪力刚好未超限。  相似文献   

11.
针对城市轨道交通中新应用的双线U型梁和传统的双线箱型梁两种不同形式桥梁,用有限元法计算分析桥上无缝线路附加挠曲力及附加挠曲位移的分布,着重研究线路纵向阻力、桥梁跨度和桥墩刚度等参数变化对桥上无缝线路钢轨受力、桥墩受力及桥梁挠度的影响。研究结果表明,线路纵向阻力、桥梁跨度对钢轨挠曲力的影响较大,而桥墩纵向刚度对钢轨挠曲力的影响较小,为城市轨道交通设计提供理论参考依据。  相似文献   

12.
客运专线桥上纵连板式无砟轨道制动附加力影响因素分析   总被引:9,自引:1,他引:8  
为了揭示各种因素对桥上纵连板式无砟轨道制动附加力的影响,为轨道和桥梁设计提供基础参数,运用空间有限梁单元理论,建立了桥上纵连板式无砟轨道线板桥墩空间一体化纵向力计算模型,并编制了相应的计算软件。运用所编制的计算软件,分析了扣件阻力、底座板与桥梁摩擦系数、道床板伸缩刚度以及底座板与桥梁固结机构对制动附加力的影响。结果表明:对16 kN/m的制动力,扣件阻力在16 kN/m及以上变化,钢轨、道床板及桥梁墩台的纵向力变化很小;增大底座板与桥梁间摩擦系数,墩台顶最大纵向力稍有增加,钢轨和道床板纵向力大幅降低;增大道床板伸缩刚度和取消底座板与桥梁间固结机构,有利于降低墩台顶最大纵向水平力。  相似文献   

13.
为了研究线路纵向阻力形式对桥上无缝线路纵向力的影响,基于梁轨相互作用原理,采用有限元方法建立了线-桥-墩一体化计算模型,以多跨简支梁为例,分析了常阻力、双线性和幂指数型等不同形式的线路阻力对计算桥上无缝线路时的影响。计算结果表明:常量阻力下计算得到的钢轨伸缩力较双线性及幂指数型阻力要小,且随温度跨度的增加双线性和幂指数型计算结果越来越接近,而常量阻力与两者差别逐渐增大;计算钢轨制动力时,常量阻力计算结果要小得多,且梁轨相对位移较大,已超出我国检算标准;不同钢轨降温幅度下,双线性和幂指数型阻力计算的钢轨断缝值基本相同,但却远小于常量阻力,且钢轨降温幅度越大,差别越大。由此可知,应重视线路阻力形式的选取,尽量由实际测试数据进行拟合,使其能模拟真实的现场情况。  相似文献   

14.
研究目的:因桥上无缝线路梁轨相互作用较为复杂,桥梁和轨道结构的受力与变形特性成为国内外学者的热点研究问题。为研究温度荷载、列车荷载和制动荷载作用下轨道结构的受力与变形规律及影响因素,根据嵌入式轨道的特点,本文通过建立嵌入式轨道桥上无缝线路有限元模型,计算伸缩力、挠曲力和制动力三种工况下轨道结构的受力与变形情况,并分析梁体温差、高分子材料纵向阻力和墩台纵向刚度对伸缩力的影响。研究结论:(1)嵌入式轨道的线路纵向阻力和垂向刚度均为线性变化,且轨板相对位移限值为6.2 mm;(2)轨道结构的受力和变形均随着梁体温差的增加而线性增加,允许梁体温差为38℃;随着线路纵向阻力的增加,钢轨纵向位移和伸缩力逐渐增大,而轨板相对位移则逐渐减小;桥梁墩台纵向刚度对轨道结构的受力和变形影响较小;(3)在挠曲力和制动力工况下,轨板相对位移和钢轨附加力均较小,故在设计时应重点关注伸缩力工况;(4)当梁体温差和轨温变化幅度为30℃时,钢轨强度和轨板相对位移均满足要求,因此在32 m简支梁上铺设有轨电车嵌入式轨道无缝线路是可行的;(5)本研究成果对桥上有轨电车嵌入式轨道设计具有参考价值。  相似文献   

15.
客运专线铁路简支梁桥墩台纵向线刚度分析研究   总被引:2,自引:1,他引:1  
从梁轨共同作用机理出发,建立了客运专线简支梁桥梁轨共同作用计算模型,针对有砟轨道与无砟轨道各自的特点,通过无缝线路桥梁纵向力分析计算,系统研究了桥梁墩台纵向线刚度对桥梁和轨道结构的影响,提出了不设置钢轨伸缩调节器的常用跨度简支梁桥墩台纵向线刚度合理取值,并对其适用性进行了探讨。  相似文献   

16.
为评估高速铁路桥上无缝线路扣件对服役环境的适应性,以WJ-8型小阻力扣件为例,开展一系列室内纵向阻力试验。设置-30~60℃的环境温度和90~120 N·m的螺栓扭矩,在标准组装状态下按照10 kN/min的恒定速率加载,实时记录纵向力值及钢轨纵向位移值,每个工况加载4次。试验获得了4个不同扭矩和10个不同温度组合工况下的扣件纵向阻力-位移变化特征,分析得到温度、扭矩和纵向滑移阻力三者之间的映射关系。研究结果表明:1)不同工况下,扣件纵向阻力随位移的增大呈幂指型函数递增关系;不同扭矩作用下,扣件纵向滑移阻力随温度升高呈指数型函数递增关系;不同温度作用下,扣件纵向滑移阻力随扭矩增大呈线性递增关系。2)扭矩作用和温度作用对小阻力扣件纵向阻力均有影响,但扭矩作用基本不影响扣件阻力对温度变化的敏感性,反之亦然。3)当温度上升至40℃以后,在规范建议的90~120 N·m扭矩下,纵向滑移阻力均不再满足4±1 kN的要求。建议高温环境下适当减小螺栓扭矩,以便于桥上无缝线路附加力的释放。研究成果对于优化轨道结构设计、验证和完善无缝线路扣件纵向阻力取值计算理论具有参考意义。  相似文献   

17.
根据梯形轨道的结构特点,建立梯形轨道在长大坡道上的叠合梁计算模型。长大坡道上梯形轨道在制动力作用下其沿线路方向的荷载增加,垂向荷载相应减少,对梯形轨道纵向稳定性而言,是不利的。分析长大坡道上梯形轨道的纵向力传递机理,扣件的纵向阻力、凸挡台的抗剪强度、凸挡台侧壁缓冲垫的刚度是梯形轨道纵向力传递的控制因素。采取控制变量的方法,研究三者参数变化对轨道的内力和位移的影响。结果表明:在外在荷载作用下,长大坡道上梯形轨道钢轨爬行大于水平线路,凸挡台抗剪强度满足要求,并提供不同扣件纵向阻力和缓冲垫刚度对结构的影响。  相似文献   

18.
为研究连续梁桥上CRTSⅡ型板式无砟轨道在制动力作用下纵向力的变化规律,以一客运专线(82+128+82)m连续梁为例,建立线板桥墩空间一体化纵向力计算模型,分析制动力作用位置、联合板伸缩刚度和滑动层摩擦系数对轨道结构和桥梁结构纵向力的影响。结果表明:当在固结结构处开始制动,制动力分布于温度跨度较大一侧时,联合板受到的纵向拉力和压力最大;随联合板伸缩刚度折减系数的增大,联合板的纵向拉力和压力增大;当摩擦系数从0增加到0.15时,联合板纵向拉力和压力减小,变化趋势明显,而当摩擦系数由0.15增加到1.00时,联合板纵向拉力和压力增大,变化趋势缓慢。  相似文献   

19.
为了研究凹形竖曲线上梯形轨道的稳定性,以某城市轨道交通线为例,建立梯形轨道在凹形竖曲线上的叠合梁模型,计算分析在温度荷载、列车垂向荷载和制动力作用下,梯形轨道在凹形竖曲线上的力学特性以及扣件纵向阻力和缓冲垫刚度对轨道结构受力和变形的影响规律。计算表明:由于凸挡台的限位作用,轨道结构在竖曲线上较为稳定;扣件的纵向阻力对钢轨的纵向位移影响较大,为限制钢轨的纵向位移可适当增加扣件的纵向阻力;凸挡台缓冲垫刚度的提高能有效控制钢轨的纵向位移,但会减小缓冲作用,故应合理控制缓冲垫的刚度。  相似文献   

20.
为得到采用聚四氟乙烯胶垫的WJ-7型扣件纵向阻力特性,在不同工况下对扣件纵向阻力进行试验测试,并建立桥上CRTSI型板式无砟轨道无缝线路计算模型,分析采用聚四氟乙烯胶垫扣件系统在桥上无缝线路的使用性能。研究结果表明:对比普通胶垫,WJ-7型扣件采用聚四氟乙烯胶垫可以显著降低扣件纵向阻力,但容易发生胶垫窜出现象,将聚四氟乙烯胶垫与普通胶垫作黏结处理后对其纵向阻力影响很小;扣件纵向阻力随聚四氟乙烯胶垫厚度增大而减小;轨底作除锈处理对采用普通轨下胶垫与复合胶垫的扣件系统纵向阻力影响较大,对采用聚四氟乙烯胶垫扣件系统纵向阻力影响很小;与采用复合胶垫相比,扣件系统采用聚四氟乙烯胶垫时钢轨附加力及纵向位移会略微增大,当胶垫窜出时,在桥端2块轨道板采用聚四氟乙烯胶垫可明显减小钢轨附加力及纵向位移,并显著降低凸型挡台承受的纵向力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号