首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
水中围堰施工中,封底混凝土厚度是保证施工安全的重要参数,依据坑底水头高度确定。坑底水头高度取决于初始水头高度及渗流过程中产生的水头损失,水头损失与土体物理性质及渗流路径等因素密切相关。文中从渗流基本理论出发,结合伯努利方程,推导水头损失计算方法,确定水头损失系数与初始水头高度、渗流经过的土体高度及渗透系数之间的表达式,并分析3个参数对水头损失的影响;通过常水头土体渗透试验验证计算方法的合理性,并将计算方法应用于福建武荣大桥工程中,从理论角度确定该桥水中围堰封底混凝土厚度。  相似文献   

2.
邓彪  郭小龙  李志军 《隧道建设》2016,36(9):1114-1119
为快速恢复南昌红谷隧道冬汛灾后被冲毁的模袋砂堰体,给围堰内剩余工程提供无水作业条件,选用“土石围堰+塑性混凝土钻孔咬合桩和高压旋喷桩防渗体系”新型堰体恢复方案: 水中利用抓斗船沿围堰轴线抛填石块,陆上利用自卸汽车外运黏土从堰体两端逐步抛填直至堰体合拢,采用成孔过程中对周边地层扰动较小的反循环钻机施工塑性混凝土钻孔咬合桩,并在新做塑性混凝土咬合桩与原围堰塑性混凝土防渗墙接茬处施工高压旋喷桩加强止水。实践证明: 重建土石围堰具有施工速度快、成本相对较低、作业区域小、稳定性好、抗渗能力强等优点,适用于沉管隧道江中围堰的新建和重建等临时性水利工程。  相似文献   

3.
郭小龙  李志军 《隧道建设》2016,36(9):1147-1154
为了实现江中沉管与岸上匝道水下互通立交,在岸边施工高度为20 m、方量达80万m3的充砂长管袋围堰,围堰采用两侧为充砂长管袋、中间为砂芯的堰体结构,并在砂芯范围设塑性混凝土防渗墙隔断赣江水,施工围堰内明挖结构。以南昌红谷隧道为背景,介绍了国内内河沉管隧道规模最大的充砂长管袋围堰施工技术,施工过程中克服了赣江水位落差大、航道范围水流速度大和水位高等复杂的水文条件,利用7个月完成了充砂长管袋堰体的填筑和塑性混凝土防渗体系的施工。工程实施结果表明: 充砂长管袋围堰及其塑性混凝土防渗墙在内河沉管隧道领域是一种工艺新颖、技术先进、安全可靠的防护体系,且对江河环境影响受控,是值得进一步推广应用的施工工法。  相似文献   

4.
长湘高速公路湘江特大桥主桥为(115+195+115)m三跨预应力混凝土连续刚构桥,该桥58号、59号主墩承台采用无底双壁钢套箱围堰施工。为使围堰结构合理、施工安全,采用三维有限元软件ANSYS对该桥58号、59号主墩承台围堰进行结构分析,并结合施工现场的特点,对围堰结构进行优化处理。结果表明:围堰封底混凝土达到80%设计强度并进行堰内抽水时为最不利工况;增大环板厚度使围堰结构受力明显减小;围堰夹壁内填充混凝土较填充水可有效减少结构的最大应力和变形、提高结构的刚度和稳定性;围堰最可能的失效模式为钢围堰连同封底混凝土一起上浮,增加封底混凝土与桩护筒间的握裹力(采取围堰压重、堰壁内灌水等措施)有利于提高围堰抗浮稳定性。实践证明优化措施取得了良好的效果。  相似文献   

5.
韩秀娟  陈旺  王秋林 《隧道建设》2015,35(10):1082-1088
南昌红谷隧道干坞基坑深16 m,临赣江最近距离仅15 m,水位变化幅度达3~13 m,砂层渗透系数达120 m/d,防渗体系施工处于工期关键线路,防渗体系施工质量是实现基坑开挖、沉管预制、浮运、沉放等工期目标的重要保证。文章通过对塑性混凝土配合比、槽壁加固、成槽工艺、泥浆性能指标、清孔换浆、混凝土浇筑及墙体检测等的思考,提出了临江富水砂层干坞基坑防渗墙施工中三轴搅拌桩槽壁加固、配合比试配验证、"两钻两抓"成槽工艺、超声波仪成槽检验、高密度电法墙体检测以及膨润土泥浆性能指标、加强混凝土过程控制等主要施工方法和技术措施。通过在南昌红谷隧道临江富水砂层干坞基坑中的应用,证明塑性混凝土防渗墙止水防水效果非常好,为基底处理及沉管预制施工创造了良好的条件。  相似文献   

6.
为了探究高水位山岭隧道建设中地下水渗流对隧道衬砌的结构影响,运用有限元计算软件MIDAS GTS NX对某隧道工程进行建模计算,分析了不同注浆圈厚度(0m,3m,6m,9m)和注浆圈渗透系数(2.5×10-8 m/s,2.5×10-7 m/s,2.5×10-6 m/s,2.5×10-5 m/s)对衬砌结构竖向位移、大主应力和隧道涌水量的影响规律.结果 表明:注浆圈厚度的增加,可以减小衬砌结构的大主应力、竖向位移和隧道涌水量,不过减小幅度在厚度大于3m之后有明显的降低;随着注浆圈渗透系数的降低,衬砌结构的竖向位移和隧道涌水量都呈现出先急后缓的减小趋势,衬砌结构的大主应力与注浆圈渗透系数大致呈正相关关系.  相似文献   

7.
余雯 《城市道桥与防洪》2020,(5):213-215,M0021,M0022
由于具有工程性能好,施工简便,可重复利用,适用性强等特点,钢板桩围堰在越来越多的工程中得到应用。在龙湖地区隧道工程中,综合考虑结构稳定性、防渗性能、沉拔桩难易程度等因素,设计两种钢板桩围堰方案,分别采用plaxis和slide有限元分析软件对两种方案进行结构变形及渗流计算,综合考虑施工条件,分析两种方案的优缺点及适用条件。  相似文献   

8.
水下隧道最小覆盖层分析是设计过程中关系安全和经济的重要因素。以青岛胶州湾海底隧道工程为背景,建立不同覆盖层厚度的海底隧道渗流有限元计算模型,分别就隧道穿越f3-1破碎带时的涌水量、渗流速度、孔隙水压力以及注浆圈参数选取开展研究和讨论。研究表明: Park公式与有限元涌水量计算结果较为吻合;覆盖层厚度较大时,渗流最快区域出现在拱脚;覆盖层厚度较小时,拱脚和拱顶中心均渗流较快;边墙和底板的孔隙水压力变化梯度随覆盖层厚度的增加而增大,拱顶规律相反,并且覆盖层厚度超过22 m后孔隙水压力变化梯度基本保持不变;从可靠性和经济性两方面综合考虑注浆圈厚度和渗透系数参数选取,本文给出了注浆圈参数建议取值范围为: 注浆圈厚度为4~6 m,渗透系数为1×10-7~2×10-7 m/s。  相似文献   

9.
贫混凝土透水基层的排水能力   总被引:4,自引:0,他引:4  
为研究路面内部排水能力的计算方法、基层渗透系数取值方法以及路面内部退水时间,采用较大尺寸的试验板进行了透水基层排水能力的模拟试验研究,并通过研究变水头时不同坡度、不同孔隙率下的路面退水时间,建立了退水时间、退水百分比、孔隙率和坡度之间的回归公式。研究结果表明:在恒水头条件下,当基层底面水平时,基层的排水能力为达西定律计算值的1/2;当基层底面坡度为s时,基层的排水能力q可近似为q=kh1s;试件的垂直渗透系数和基层渗透系数的概念及数值不同,可以通过修正试件室内垂直渗透系数来获得路面基层渗透系数。建立的回归公式为最终确定路面内部的排水时间标准提供了依据。  相似文献   

10.
非饱和土土水特征曲线(SWCC)在非饱和土性质的研究中是很重要的。通过现场原位渗水试验、室内试验,结合数值反演得到了晚更新世黄土(Q3黄土)脱湿和吸湿土水特征曲线。用压力板仪测量Q3黄土脱湿过程中不同含水率下的吸力,之后用Van Genuchten经验公式对试验数据进行拟合,得出了Q3黄土脱湿SWCC曲线的数学表达式。在现场渗水试验的基础上,用随机搜索和经验逼近相结合的方法,通过数值计算反演Q3黄土吸湿过程中的土水特征曲线参数。此外,还实测了Q3黄土竖直向的饱和渗透系数。结果表明:Q3黄土脱湿路径的进气值为4.16 k Pa,饱和体积含水量为0.52;吸湿路径的进气值为3.92 k Pa,饱和体积含水量为0.48。残余体积含水量为0.01,残余饱和度为2.0%,残余的气体含量为4.06%。竖直与水平向渗透系数的比率为1.62,水平向饱和渗透系数为7.08*10-6m/s,竖直向饱和渗透系数为1.147*10-5m/s。室内实测竖直方向饱和渗透系数为2.71*10-5m/s,反演值与实测值是属于同一数量级的。  相似文献   

11.
芒稻河特大桥主桥为(77+3×130+82)m预应力混凝土刚构-连续梁组合体系桥,主墩基础位于深水区,承台施工时抽水最大水头达18.7m。采用钢板桩围堰施工承台,围堰最大平面尺寸为45.6m×16.8m,采用拉森Ⅳw型钢板桩,单根桩长36m,围堰内设置5道内支撑。采用有限元软件,计算围堰3个主要施工工况下钢板桩和内支撑的变形、应力,以及围堰封底抽水完成工况下封底混凝土的抗浮安全系数和应力,计算结果均满足要求。施工时,采用定位导向架和平面定位框限位插打钢板桩,内支撑采用工厂拼装现场分层整体吊装、水下抄垫等工艺,应用水下分阶段吸泥、水下二次封底等施工技术,实现了深水钢板桩围堰快速安全施工。  相似文献   

12.
为了保证富水砂性地层土压平衡盾构安全掘进,渣土不仅需有良好的流塑性,还需具备较强抗渗性以避免喷涌发生。结合坍落度试验和渗流试验,研究泡沫改良砂性渣土渗流特征及其受流塑性和水压力的影响规律。根据渣土流塑性、析水或析泡沫状态,将改良渣土分为欠改良、流塑性合适、流动性合适但析水、流动性过大(可能析泡沫)和流动性过大且析水等5种状态。通过长时间渗流试验表明,泡沫改良渣土一般经历初始渗流稳定期、快速发展期和缓慢发展期等3个时期。泡沫注入比增大会使渣土抗渗性增强,含水率适当增大也会增强抗渗性,但含水率过大反而会减弱抗渗性。欠改良的渣土初期渗透系数均大于工程要求值10-5 m·s-1,且没有初始渗流稳定期;流塑性合适和流动性过大(可能析泡沫)的渣土初期渗透系数小于10-5 m·s-1,且初始渗流稳定期长;渣土析水量较小(包括流动性合适但析水和部分流动性过大且析水)的渣土渗流特征与流塑性合适的渣土类似,但析水量较大的渣土初期渗透系数均大于工程要求值且无渗流稳定期。最后,通过变化渣土渗流试验水压力发现,随着水压力增大,渣土改良后初期渗透系数降低和渗流稳定期缩短,改良参数的合适范围随着水压力的增大而缩小;当水压力大于一定值后,泡沫改良砂性渣土渗透性不能满足工程要求。  相似文献   

13.
为了研究洛溪大桥拓宽工程Z3#主墩承台所用八边形双壁钢围堰挡水结构的力学性能,采用有限元软件ANSYS对该钢围堰关键施工阶段的受力特征进行仿真分析,以保证钢围堰在施工阶段的安全性。研究结果表明:1)钢围堰内封底混凝土达到设计强度,且围堰内的水抽干时所对应的工况为最不利工况,此时结构的最大变形为7.18 mm,出现在围堰横桥向壁板的中部;2)结构的最大应力为180.25 MPa,出现在水平横撑棱角附近,其中水平横撑处于第2节围堰下端至第1道内支撑的中间位置;3)在施工阶段中,八边形双壁钢围堰的变形和最大应力均小于设计值,结构刚度和强度满足要求。  相似文献   

14.
富阳鹿山大桥主墩深水承台施工技术   总被引:1,自引:0,他引:1  
富阳鹿山大桥主桥为(118+256+118)m双塔单索面预应力混凝土斜拉桥,桥塔墩承台为圆形,直径22 m,高5.5 m,承台底面在设计水位以下达15 m,采用圆形双壁钢套箱围堰施工方案.该围堰不设内支撑,兼有挡水和模板功能.围堰在工厂内竖向分节、环向分块制作,车运至墩位处拼装,用千斤顶整体下放首节围堰自浮于水中,再对称安装剩余单元;利用定位桩精确定位,长臂挖机配合吸泥机均匀下沉围堰至设计标高.封底混凝土不设置隔仓,采用垂直导管法一次性灌注.针对大体积承台,从配合比优化、混凝土输送方式、浇筑顺序、温度监控及养护等方面采取控制措施保证了承台大体积混凝土施工质量.  相似文献   

15.
昌九高铁扬子洲赣江公铁大桥西支主桥为(48+144+320+144+48) m无砟轨道钢箱桁组合梁斜拉桥。桥塔墩位于通航河道内,桥位处河床覆盖层浅,基岩强度高,基础由大直径钻孔桩和矩形嵌岩低桩承台组成,承台采用锁口钢管桩围堰施工方案。G33号主墩围堰平面设计尺寸54.56 m×28.52 m,锁口钢管桩采用Q345B材质■1 020 mm螺旋钢管,长28 m,钢管桩之间采用C-T形锁扣连接;围堰设置4层内支撑,单层内支撑设3道对撑,内支撑四角设型钢斜撑;基底设置混凝土垫层参与围堰结构受力。围堰采用XR360旋挖钻机在岩层中引孔,孔内换填细砂后插打钢管桩,钢管桩壁内、外两侧换填砂采用高压旋喷注浆加固。围堰设置智能化监测系统,对围堰受力、变形等进行实时动态监控。实践证明,该桥围堰结构安全可靠、止水效果良好、施工快捷高效。  相似文献   

16.
沮漳河特大桥99#水中墩钢板桩围堰内承台深埋,跨枯水期和初汛施工,设计抽水水头14 m,堰内开挖深达9.4 m,与6层围囹安装干扰极大。如何顺利完成钢板桩插打合龙、如何结合围囹安装进行超深覆盖层的快速开挖、如何结合承台、墩身施工分层拆除围囹以及利用墩身作为围堰的水上拆除平台是项目成败的关键因素,笔者分别对其进行介绍。  相似文献   

17.
双排对拉钢板(管)桩围堰是堰筑隧道常用的围堰形式,围堰结构选型设计(刚度选型、是否采取地基处理或反压土护脚等)往往差异较大。文章通过对围堰结构选型进行综合对比论证,同时采用通用有限元软件SAP2000对各种处理手段的影响进行计算分析,计算填土工况和抽水工况两种工况条件下的钢板桩弯矩、内力、位移以及拉杆轴力等,对数据进行分析。结果表明,提高自身刚度可以减小变形及应力,但并不是线性关系,地基处理和反压土效果基本相当,可有效降低拉杆轴力、板桩弯矩、应力及变形等各参数。因此,围堰结构选型首先应根据地质条件、水文条件选定合适刚度的钢板(管)桩型号,再根据实际工程情况,选择地基处理或反压土等处理方式。  相似文献   

18.
为解决南昌红谷隧道高水位差条件下岸上暗埋段与沉管段连接处(接口段)挡水,顺利完成前期接口段的施工以及后续沉管浮运前接口段的拆除问题,综合考虑工程施工的安全性、可靠性及经济性,选用大型充砂长管袋围堰及防渗墙作为岸壁保护结构,钢管桩、旋喷桩和搅拌桩的组合形式作为围护结构。对常规水上拆除接口段方案进行优化,研究出干拆除堰内基坑堵头钢管桩、陆上进行管节基槽开挖以及对接范围内围堰陆上同步拆除等关键施工技术。施工效果表明:充砂长管袋围堰及防渗墙的组合止水效果好,陆上拆除接口段钢管桩、管节基槽及长管袋围堰质量有保证,作业安全可靠,接口段拆除工期缩短约31%,拆除成本降低约26%,取得了较好的应用效果,可为类似沉管隧道工程提供参考。  相似文献   

19.
《世界桥梁》2021,49(5)
江津白沙长江大桥为两跨悬吊地锚式悬索桥,桥梁全长1 300 m。西桥塔紧邻成渝铁路既有线,边坡陡峭且位于浅覆盖层,其承台结构为2个独立的正方形结构,尺寸为17.0 m×17.0 m×5.0 m。综合考虑桥址所在长江水域的地质、水文等,设计了适用于浅覆盖层的无封底钢-混组合围堰。围堰结构平面布置形式为"E"形结构,分为迎水面壁体、侧壁、中隔壁及内支撑系统,迎水面壁体长度为72.0 m,壁体平均高度为16.5 m;侧壁长度为25.5 m,壁体高度为5~17 m,随边坡面变化。围堰竖向分为2层,下部结构为混凝土挡墙基础,采用桩基与冠梁的组合形式,上部结构采用双壁钢围堰,壁体厚度为1.5 m。采用花管注浆技术对浅覆盖层区域土体进行加固,可节省混凝土用量且便于后期钢围堰回收。通过有限元法对壁体、内支撑及基础的强度、变形进行计算,并对壁体进行屈曲分析,结果表明无封底钢-混组合围堰各项技术指标均满足要求。  相似文献   

20.
山岭隧道复合式衬砌层间土工布是初期支护渗水的主要排放途径,在隧道防排水系统中起到重要作用。为了量化工程条件下复合防水层的工作性能,通过理论分析得到了考虑层间挤压和泥沙淤堵的土工布横向渗流模型,并利用该模型讨论了衬砌层间挤压力对各种规格土工布横向排水能力的影响作用。为进一步验证该理论模型的合理性,设计了新型室内试验装置,评估了不同层间土压力、土工织物淤塞与否对土工布层间横向渗流系数的定量影响。结果表明:复合防水层工作状态下理论模型计算所得渗透系数与耦合浇注洁净接触面试验值较为接近,该理论模型可以反映隧道防水层的实际工作状态;土工布的渗透系数随压力变化是非线性的,随着压力的增大,渗透系数值先迅速降低,后逐渐放缓;当压力较小时,土工布厚度越大水平渗透系数越大,当压力增大时,土工布厚度越大,水平渗透系数下降越快直至无明显差异;验证试验中发现压块内部始终保持3~5 cm水头,意味着初支和二衬层间积水无法完全排水干净。最后结合该理论模型,提出了隧道防排水量化设计的方法,具有一定的工程应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号