首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 451 毫秒
1.
车用PEM燃料电池发动机的动态响应特性   总被引:2,自引:1,他引:1  
通过建立一个蛇形流场单电池的三维模型,计算了质子交换膜(PEM)燃料电池发动机的动态响应特性,从而得出影响PEM燃料电池发动机动态特性的最佳运行条件。结果表明,操作压力为303 975 Pa时超调量过大,202 650 Pa时性能最好;温度越高,超调量越小,但性能越差,低电流密度下60℃时电池性能最佳,高电流密度下70℃时电池性能最佳;阴阳极相对湿度之比为100%/100%时,超调量过大,为70%/70%时性能最稳定;空气过量系数为1时,超调量过大,电池的动态性能不稳定,空气过量系数为2时最利于控制。  相似文献   

2.
质子交换膜燃料电池作为车载新型动力源具有广阔的应用前景而备受关注。流场板是燃料电池的核心部件之一,起分配反应气体、移除水分与杂质和传导电子等作用。目前对质子交换膜燃料电池流场方面的研究,大多针对常规流道进行了尺寸和流场布置方式的优化,部分研究在流道内部添加不同形式的堵块以增强气体传质,或将多孔介质材料应用于流场板,或设计新型的三维网格流场结构,通过此类方式来优化燃料电池的水热管理,强化传质效果以提高燃料电池的性能。本文中对这些研究进行归纳总结,并得出若干结论。  相似文献   

3.
MAN商用车辆股份公司和德国Ballard能源公司签订了一项协议,把燃料电池系统用于1辆城市客车,这辆汽车2004年初之前用于慕尼黑机场,作为氢方案的一部分。这辆客车为低地板混合燃料电池客车,由65 kW PEM(proton exchangemembrane,质子交换膜)燃料电池系统和能量存储单元提供动力。在各种型式的燃  相似文献   

4.
燃料电池汽车研究现状与发展前景   总被引:9,自引:0,他引:9  
目前,地球上的石油资源日益短缺,大气环境日益恶化。为此,世界汽车界的许多研究机构在发展燃料电池作为零排放和超低排放汽车的动力等方面开展了大量的研究活动。应用燃料电池应该是解决石油资源缺乏的有效途径之一。PEM燃料电池具有良好的特性,被很多研究机构和汽车制造商认为是汽车用燃料电池的唯一选择。  相似文献   

5.
本文从成本的角度提出了车用PEM燃料电池寿命的一种评价方法—燃料电池经济寿命,并建立相应的数学模型。燃料电池经济寿命定义为燃料电池总成本(包括制造成本和使用过程中燃料与附属设备消耗成本)除以使用时间得到的平均使用成本最小时的燃料电池工作时间。燃料电池到达其经济寿命后,更换膜-电极组件,进入第2轮寿命循环,分析表明,第2轮寿命循环的平均成本有所降低,经济寿命相应缩短。最后分析了氢气价格和电池衰减率等因素对燃料电池经济寿命的影响。  相似文献   

6.
去年,通用汽车公司开发出一种牌号为Hydro genl的燃料电池轿车,宣称采用了当前汽车工业中技术最先进的燃料电池反应堆。该车是在欧宝Zafira轻型厢式车的基础上开发的一种5座概念轿车,其采用的56kw电动机,电力来自一个燃烧液体氢的60kw的PEM(聚合物电极隔膜)燃料电池反应堆。依载荷而定,  相似文献   

7.
质子交换膜燃料电池(PEMFC)具有高效节能、环境友好、比功率高及起动快等优点,越来越受到各国关注。文章重点叙述了PEMFC关键技术的研究进展,主要包括质子交换膜(PEM)、电催化剂和双极板的研究进展。开发新型质子交换膜材料并改进其制备工艺;提高催化剂性能,降低铂金属用量,寻找廉价合适的非铂族催化材料;选择合适的双极板材料及先进的制备工艺是今后质子交换膜燃料电池关键技术的发展方向。  相似文献   

8.
本文根据美国能源部资料介绍了对车有PEM燃料电池的成本分析。当前成本约为8294/kW。PNGV对2004年的目标成本要求为$50/kW。目前车用内燃机动力系统的成本约为$25-35/kW。  相似文献   

9.
信息     
VW公司高温燃料电池取得突破性进展VW公司最近宣称,该公司已历时7年的高温燃料电池研究取得突破性进展。VW公司现有50人的团队从事高温燃料电池的研发,该项目被认为是公司最重要的项目之一;公司之前并未对该项目进行大力宣传,那是因为还不能确信研发方向是正确的,而现在公司认为他们已找到解决方案,将来可进行大规模生产并进入市场。VW公司认为,技术的突破将会促进燃料电池耐久性和经济性新标准的出台。现在车辆上大多采用低温燃料电池,而VW公司一直坚信未来属于高温燃料电池。与低温燃料电池相比,高温燃料电池的质量可降低30%,因此,安…  相似文献   

10.
在欧洲摩纳哥举行的燃料电池车的试乘会上,通用汽车公司"HYDROGEN 3"与"HY Wire"燃料电池车展现了独具匠心的新设计理念. 一、"HYDROGEN 3"与"HYWire" 每年1月召开的底特律国际车展上,通用汽车公司必定会推出展示汽车未来发展趋势的概念车.例如,2002年底特律车展上亮相的燃料电池概念车"Autonomy"就是其代表作品.  相似文献   

11.
质子交换膜燃料电池 (Proton Exchange Membrane Fuel Cell,PEMFC) 进行水管理的目的,是保证电池内部始终处于水平衡状态,实现长期稳定工作并且保持最高输出性能。精细的水管理策略依赖于电池内部的水含量状态准确量化的评估方法。总结归纳了目前国内外 PEMFC水含量的估计方法,概括为基于模型以及基于试验的两种方法;在对比分析现有估计方法优缺点的基础上,提出进一步研究的重点及方向。对车用 PEMFC水含量在线估计的研究具有重要的理论基础及工程应用价值。  相似文献   

12.
针对国内外氢燃料电池汽车发动机的电堆及其关键组件、关键零部件及水热管理技术,总结了其研究现状和发展趋势。在电堆及其关键组件研究方面,为进一步提高电堆功率,降低电堆成本,可着手于有序化膜电极制备工艺的研发,发展低铂催化剂以及探究金属双极板及其涂层技术。在关键零部件研发方面,空气压缩机和氢气循环泵将朝着大流量、小型化等方向发展。在水热管理研究方面,优化双极板流场和气体扩散层的微孔结构,采用复合控制策略等方式有利于燃料电池的水热管理。  相似文献   

13.
论述了质子交换膜燃料电池发动机热管理的重要性以及对电池性能的影响,介绍了热管理系统的设计要求及匹配计算的过程.建立了质子交换膜燃料电池发动机温度模糊控制系统,并通过试验验证,证明其对温度有良好的控制。  相似文献   

14.
车用燃料电池发动机热管理系统研究   总被引:3,自引:0,他引:3  
建立了车用燃料电池发动机热管理系统模型,该模型能考虑系统内各部件间及部件与电池堆间的相互影响;应用该模型计算分析了某65 kW车用燃料电池热管理系统对燃料电池堆性能的影响、热管理系统运行参数的控制依据和散热器布置形式的影响等。结果表明,应主要通过调节冷却风扇转速来调整电池堆温度,通过调节冷却水泵来保持电池堆进出口水温温差;散热器并联要优于散热器串联。  相似文献   

15.
为了维持质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)工作在合理的温度区间,文章首先建立了PEMFC热管理系统的电堆温度模型和电堆冷却回路模型,然后建立了PEMFC本体模型,并进行了本体模型的验证,采用基于Bang-Bang控制的热管理控制策略,并进行了离线仿真和快速控制原型试验。结果表明:在不同的电流负载变化的情况下,电堆能够很好地保持在目标温度(70±1)℃,散热器冷却水温度保持在目标温度(70±2)℃,达到了预期的控制效果。  相似文献   

16.
质子交换膜燃料电池(PEMFC)具有发电效率高、运行温度低、启动速度快、结构简单、可靠性高等优点,基于其优点近几年得到了快速的发展。由于工作时水汽渗透作用,导致阳极惰性气体和水的积累,其长时间无法排出将降低电堆的性能以及使用寿命。文章给出了脉冲式尾排策略的优化方向,可以有效排出尾气,提高燃料利用率,从而保证PEMFC的性能。  相似文献   

17.
总结了燃料电池极化曲线的半经验公式,利用某80kW质子交换膜燃料电池试验数据来拟合公式中的相关系数,同时利用Matlab/Simulink软件建立了质子交换膜燃料电池堆的仿真模型,为燃料电池发动机系统的仿真和分析提供了一个重要工具。通过此模型可以研究燃料电池电堆的运行参数如气体压力、温度、当量比等对电堆性能的影响,从而有助于研究整个燃料电池发动机系统的性能。  相似文献   

18.
采用田口法对质子交换膜燃料电池堆的运行参数进行优化,利用L16(45)正交表安排试验方案,在5kW质子交换膜燃料电池堆上进行电堆性能测试.对电堆输出特性的信噪比(SN比)进行方差分析,结果表明气体压力和电堆温度是高度显著因素.给出了运行参数的优化值及电堆最佳性能的置信区间,并进行了试验验证.  相似文献   

19.
燃料电池电动汽车的技术难关和发展前景   总被引:17,自引:0,他引:17  
陈全世  齐占宁 《汽车工程》2001,23(6):361-364
本文在阐述了质子交换膜燃料电池上作原理的基础上,首先介绍了其质子交换膜与催化剂的研究现状。然后针对汽车领域的需要,给出了燃料电池发动机的概念,并对其燃料和氧化剂供给、水/热管理和控制等各子系统所要解决的技术难关进行了系统分析。同时对燃料电池车商业化所必然要涉及的氢燃料供给和价格等问题进行了较客观的论述。最后对燃料电池车的发展前景进行了预测,提出了相应的发展措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号