首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
针对网联车辆与普通车辆构成的异质交通流,考虑网联车辆车对车(V2V)、车对基础设施(V2I)不同通信技术,研究复杂异质交通流稳定性.基于李雅普诺夫理论,分析对比不同通信技术下网联车辆与普通车辆构成的异质交通流稳定性;基于V2V、V2V/V2I的网联车辆和普通车辆以不同比例混合时,进行异质交通流稳定性判别及稳定域解析.通过数值仿真,验证理论解析的正确性.研究结果表明,基于V2V/V2I的网联车辆比基于V2V的网联车辆混入对异质交通流稳定性改善效果更显著.基于V2V、V2V/V2I的网联车辆同时汇入普通车辆交通流的情况下,当基于V2V的网联车辆比例较低时,不会明显提高异质交通流稳定性;而基于 V2V/V2I的网联车辆即使在低比例时,也会显著改善交通流稳定性;且基于V2V网联车辆比例较低时,平衡态临界速度值随着基于V2V/V2I网联车辆的比例增加近似呈线性减小.  相似文献   

2.
为研究智能网联车辆(CAV)对交通流稳定性的影响机理,对CAV车辆与人工车辆(HMV)构成的异质交通流,先建立车道管理策略下的交通流分配模型,提出车队管理策略下的车辆编队规模计算方法;再基于CAV与HMV车辆的跟驰模型,运用李雅普诺夫理论,搭建交通流稳定性分析框架;最后,构建异质交通流稳定性判别式,对比分析在不同管理策略下异质交通流稳定性的演变机理。研究结果表明:在随机混行条件下,当车辆速度大于23.12 m/s或CAV车辆的渗透率高于92%时,异质交通流处于恒稳定的状态;在车道管理策略条件下,当CAV车辆的渗透率低于60%时,异质交通流趋于稳定,随着CAV车辆渗透率的增大,通用车道稳定性开始逐级变差;当车辆采取编队控制算法且CAV车辆渗透率大于19%时,异质交通流处于稳定状态。CAV车辆在道路中随机混行,会对交通流的稳定性造成不良影响,而通过车道管理和编队控制,交通流的稳定性得到了明显改善。该研究可为智能网联汽车的安全管控及相关交通规划提供理论指导与借鉴。  相似文献   

3.
车辆轨迹数据蕴含着丰富的时空交通信息,是交通状态估计的基础数据之一. 为解决现有数据采集环境难以获得全样本车辆轨迹的问题,面向智能网联环境,构建了混合交通流全样本车辆轨迹重构模型. 首先,分析了智能网联环境下混合交通流的车辆构成及其轨迹数据采集环境;然后,提出了基于智能驾驶员跟驰模型的车辆轨迹重构模型,实现了对插入轨迹数量、轨迹位置和速度等参数的估计;最后,设计仿真试验验证了模型在不同交通流密度和智能网联车(connected automated vehicle,CAV)渗透率条件下的适用性. 试验结果表明:CAV和网联人工驾驶车(connected vehicle,CV)的渗透率为8%和20%时,该车辆轨迹重构模型在不同交通流密度下均能重构84%以上的车辆轨迹;重构轨迹准确性随着CAV和CV渗透率的增加而提高;当交通密度为70辆/km,且CAV渗透率仅为4%的情况下,模型也能重构82%的车辆轨迹.   相似文献   

4.
分析了自动驾驶汽车自适应巡航控制(Adaptive Cruise Control,ACC)和协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆跟驰模型,从系统控制原理、车车通信技术与车间时距方面阐述了ACC与CACC车辆的异同点;将目前主流ACC/CACC车辆跟驰模型分为3类:基于智能驾驶的车辆跟驰模型、加州伯克利大学PATH实验室车辆跟驰模型与基于控制论的车辆跟驰模型,总结3类车辆跟驰模型的建模思路与主要优缺点;从道路通行能力、交通安全和交通流稳定性3方面,分析了ACC/CACC车辆对交通流特性的影响,及其研究现状与未来发展趋势。研究结果表明:不同的ACC/CACC车辆跟驰模型对通行能力的影响存在较大差别,ACC/CACC车辆有利于提升交通安全性,但由于缺乏统一的安全性评价指标,难以量化ACC/CACC车辆对交通安全性的影响程度;小规模实车试验验证了ACC车辆具有不稳定的交通流特性,否定了ACC车辆稳定性数值仿真结果,而数值仿真试验和小规模实车试验均表明CACC车辆可较好提升交通流稳定性,因此,完全依赖于计算机仿真试验无法获得令人信服的结论,实车试验是ACC/CACC研究的必要途径;为了完善ACC/CACC在交通领域的研究,应构建不同ACC/CACC车辆比例下的混合交通流基本图模型、智能网联环境下的ACC/CACC车辆跟驰模型建模方法与ACC/CACC混合交通流稳定性解析方法。  相似文献   

5.
研究协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车头时距对不同CACC比例下混合交通流稳定性的影响关系,进而为CACC车头时距设计提供参考. 应用优化速度模型(Optimal Velocity Model,OVM)作为手动车辆的跟驰模型,PATH真车实验标定的模型作为CACC车辆的跟驰模型. 基于传递函数理论,推导混合交通流稳定性判别条件,计算关于CACC比例与平衡态速度的混合交通流稳定域. 分析混合交通流在任意速度下稳定所需满足的临界CACC比例与CACC车头时距的解析关系,提出随CACC比例增加的可变 CACC车头时距设计策略,并通过数值仿真实验验证所提可变CACC车头时距策略的正确性. 研究结果表明:在所提可变CACC车头时距策略下,CACC车头时距随CACC比例增加而逐渐降低,避免取值较大影响混合交通流通行能力的提升;当CACC比例大于35%时,混合交通流在任意速度下稳定.研究结果可为大规模CACC真车实验的实施提供理论设计参考.  相似文献   

6.
研究协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车头时距对不同CACC比例下混合交通流稳定性的影响关系,进而为CACC车头时距设计提供参考. 应用优化速度模型(Optimal Velocity Model,OVM)作为手动车辆的跟驰模型,PATH真车实验标定的模型作为CACC车辆的跟驰模型. 基于传递函数理论,推导混合交通流稳定性判别条件,计算关于CACC比例与平衡态速度的混合交通流稳定域. 分析混合交通流在任意速度下稳定所需满足的临界CACC比例与CACC车头时距的解析关系,提出随CACC比例增加的可变 CACC车头时距设计策略,并通过数值仿真实验验证所提可变CACC车头时距策略的正确性. 研究结果表明:在所提可变CACC车头时距策略下,CACC车头时距随CACC比例增加而逐渐降低,避免取值较大影响混合交通流通行能力的提升;当CACC比例大于35%时,混合交通流在任意速度下稳定.研究结果可为大规模CACC真车实验的实施提供理论设计参考.  相似文献   

7.
为了更好地模拟智能网联车辆(CAV)的跟驰特性, 在纵向控制模型(LCM)的基础上考虑V2V环境下多辆前车速度和加速度的影响, 构建了智能网联环境下的纵向控制模型(C-LCM); 对LCM和C-LCM进行稳定性分析, 比较了2个模型的交通流稳定域, 确定了不同通信距离时C-LCM对交通流稳定域的影响; 设计数值仿真试验对加速和减速的常见交通场景进行模拟, 分析了在V2V通信条件下CAV的跟驰行为特征; 仿真分析了CAV不同通信距离以及不同渗透率影响下的交通流安全水平; 构建了包含不同CAV渗透率的混合交通流基本图模型。研究结果表明: 交通流稳定域随着考虑前车数量的增多而增大, 当只考虑1辆前车时, 前车与本车的间隔越远, 车辆速度系数对C-LCM稳定域的影响越大; C-LCM可以提前对多前车的行为做出反应, 更好地模拟CAV的动力学特征, 在减速情景中速度超调量从0.15减少为0.08, 最大速度延迟时间由7.5 s缩短为4.9 s, 在加速情景中速度超调量从0.07减少为0.04, 最小速度延迟时间由3.5 s缩短为2.6 s; 随着CAV渗透率的提升, 交通流的安全水平不断提升, 当通信范围内有4辆CAV时, 交通流的安全性能达到最高, 其TIT和TET指标的最大减少量分别为57.22%和59.08%;随着CAV渗透率的提升, 道路通行能力从1 281 veh·h-1提升为3 204 veh·h-1。可见, 提出的C-LCM可以刻画不同车辆的跟驰特点, 实现混合交通流建模, 并降低混合交通流的复杂性, 为智能网联车辆对交通流的影响分析提供参考。   相似文献   

8.
智能网联异质交通流混合特性   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究车联网环境下异质交通流的演变规律,基于改进的NaSch模型,针对智能网联化程度的前期、中期和后期分别进行仿真实验,得到交通流基本图,并分析通行能力与网联车渗透率的内在联系;其次,通过马尔可夫链证明了网联车形成的有序排列能提高道路通行能力,随机仿真实验验证了理论推导的正确性;最后,引入考虑车辆排列方式的相对熵,从而定量描述异质车流的有序性,阐明了智能网联车辆(connected and autonomous vehicle,CAV)改善交通状况的本质原因. 研究结果表明:随着智能网联车渗透率的增加,通行能力增加,在智能网联化前期,渗透率的增加对通行能力提升较小,最高仅提升23.5%,中、后期通行能力最高能提升125.0%;在一定交通密度下,CAV渗透率与流量呈现正相关,相对熵与流量呈现负相关;智能网联车处于分离态时相对熵较小,分离态对随机混合的通行能力的提升随着CAV渗透率的增加而降低.   相似文献   

9.
汽车协同式自适应巡航控制(CACC)系统成功应用的前提和关键,是要保证道路上的CACC车辆能与一定距离范围内的其他车辆进行互联通信.本文依据元胞自动机的基本思想,将道路离散成均匀一致的格子单元系统,并基于交通流理论和概率论,构建了车—车通信概率与CACC车辆市场占有率、交通流密度(或占有率)、速度、车头时距,以及DSRC有效作用距离之间的数学关系模型.通过大量的数值模拟实验和美国加州I880高速公路交通流数据对模型进行分析测试,表明该模型可分析不同交通流状态下道路上不同CACC车辆市场占有率,DSRC有效作用距离时的车—车通信概率.本文的研究成果对于未来促进CACC车辆的推广应用具有重要意义.  相似文献   

10.
为探究智能网联自动驾驶车辆(Connected and Autonomous Vehicle, CAV)与人工驾驶车辆 (Human Driving Vehicle, HDV)混合行驶的多车道异质交通流运行特征,本文剖析了异质交通流中不同类型车辆的跟驰模式,提出不同类型车辆双车道及多车道换道模型,进而构建了多车道异质交通流仿真模型,并分析了不同CAV混入率下的道路通行能力及换道行为特征。研究结果表明,随着CAV渗透率的提高,单车道通行能力由1678 pcu·h-1提升至4200 pcu·h-1,交通流临界密 度由25 pcu·km-1增长至35 pcu·km-1 ,同一渗透率下不同车道数的道路通行能力及临界密度值呈现显著差异性。异质交通流换道行为呈现三阶段特征:在低密度下,不同类型车辆均可自由行驶及换道;密度在20~100 pcu·km-1 时,车辆换道频率呈“上凸”状,CAV渗透率越高,HDV凸形峰值越大,而CAV峰值较低;在高密度下,受可换道空间的约束,不同类型车辆均无法完成换道。此外,进一步讨论了不同CAV渗透率及密度条件下的异质交通流仿真效益,包括交通量提升及秩序改善特征等。研究成果有助于理解智能网联环境下多车道异质交通流运行状况,为未来异质交通流管理提供理论参考。  相似文献   

11.
为研究含智能网联汽车(Connected and Automated Vehicle, CAV)和人工驾驶汽车(Regular Vehicle, RV)混行交通流下CAV跟驰行为的控制问题,考虑前后多车的速度、车头间距、速度差、 加速差等参数,采用分子动力学定量表达不同周边车辆对主体车的影响,得到可用于描述CAV在 混行交通流中的跟驰过程。稳定性分析结果表明,与全速度差模型相比,本文提出的考虑前后多车信息的CAV跟驰模型有利于提高交通流的稳定性。数值仿真与模型验证结果表明,与PATH 实验室的CACC(Cooperative Adaptive Cruise Control)模型相比,本文建立的CAV跟驰模型平均速度最大误差减小了0.19 m∙s-1 ,平均误差减小26.79%,拟合精度提高了0.91%。同时,在CAV和 RV组成的混行交通流中,随着CAV比例的逐渐增加,车队的平均速度和交通流量逐渐增加。迟滞回环曲线表明,与全速度差(Full Velocity Difference, FVD)模型相比,本文提出的CAV模型控制下的交通流稳定性更强。该模型可用于同质流或CAV与人工驾驶车辆等混行环境下的CAV跟驰控制,在目前开展混行实车实验困难的情况下,为混行交通流场景下的车辆控制及交通设施规划设计提供理论依据和模型支持。  相似文献   

12.
为研究施工区网联车与普通车混行状态下的车流跟驰及换道行为,分析网联车的区域内通讯及更小安全车距等特性,改进普通车元胞自动机模型的减速规则和随机慢化规则,构建网联车跟驰模型。建立普通车和网联车在施工区不同区段的换道意向规则,基于车距采集和空位排序算法建立网联车在通讯区域的预期换道和施工区域的强制换道模型,结合普通车换道模型模拟施工区混行车辆的换道规则及车流分布规律。采用算例验证模型,运用MATLAB仿真,多次实验消除随机因素影响,结果验证了网联车对扩大通行能力,提高平均车速及降低走行时间的有效性;不同比例下的换道点分布显示,网联车比例越高,预期换道区的换道点越靠近强制换道区,且强制换道点越靠前;而普通车换道点分布受混行车流比例的影响较小。  相似文献   

13.
未来协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆和传统车辆混合交通流的稳定性决定了CACC技术对交通拥堵、能耗排放的改善程度.鉴于此,研究不同CACC渗透率时这种混合交通流的稳定性.应用基于轨迹数据标定的IDM(Intelligent Driver Model,IDM)模型和由加州伯克利PATH实验室实车测试验证的CACC模型分别作为传统车辆跟驰模型和CACC车辆跟驰模型.依据传统车辆在扰动下的稳定性,确定高稳态速度和低稳态速度,并考虑两种车型相对数量、相对位置的随机性,设计数值仿真实验.实验结果表明,在高稳态速度下,不同CACC渗透率时混合车队均整体稳定;在低稳态速度下,当CACC渗透率较小时,车队整体不稳定,CACC渗透率需达到50%以上时,才有可能使得混合车队由不稳定转变为稳定.  相似文献   

14.
为了跟踪近年来智能网联汽车(CAV)协同生态驾驶策略的研究进展, 分析了车辆、驾驶行为、交通网络和社会这4类因素对CAV能耗的影响程度, 以车辆、基础设施和旅行者为对象对目前CAV生态研究进行分类, 重点分析了信号交叉口生态驶入与离开、生态协同自适应巡航控制、匝道合流区生态协同驾驶、生态协同换道轨迹规划和生态路由5种典型车辆协同生态驾驶应用场景的研究现状。分析结果表明: 相比人类驾驶方式, 在任何交通流量CAV 100%渗透率的条件下和低交通流量CAV部分渗透率的条件下, CAV油耗节省效果显著, 最高可达63%, 而具有部分智能化和网联化等级的CAV油耗可至少节省7%;现有研究较少考虑人机共驾情况下, 驾驶人反应延迟和自动控制器传输延迟导致的轨迹跟踪偏离; 现有研究将车车通信/车路通信假定为理想数据交互过程, 未考虑通信拓扑、传输时延、通信失效与基站切换等因素对CAV生态协同驾驶策略的影响; 现有研究较少探讨多车道、交叉口转向-直行共用车道和U型车道等交通场景, 以及不同智能网联等级CAV与人类驾驶汽车、行人、自行车等共存的混合交通条件下的生态驾驶策略; 受限于自动驾驶技术和基础设施尚未成熟和完善, 真实交通场景下的测试验证工作尚未开展; 车辆控制、车车通信、多车协同、混合交通流场景、半实物仿真测试和真实交通场景测试等方面将是CAV协同生态驾驶策略的进一步发展方向。   相似文献   

15.
基于智能网联车辆(Connected Autonomous Vehicle, CAV)跟驰特性,本文研究CAV跟驰模型.考虑多前车电子节气门角度反馈,构建CAV跟驰模型,并应用稳定性分析方法,推导所提模型稳定性判别条件.以考虑3辆前导车的CAV跟驰模型为例,设计数值仿真实验,分析不同CAV比例时混合交通流的安全性.模型稳定性分析表明:所提模型相比已有模型(CAV的T-FVD模型及常规车辆FVD模型)具备更优的稳定域,且考虑前车数量越多、多前车反馈权重系数越大,所提模型的稳定性越好;相同取值条件下,距离越远处的前车反馈权重系数对所提模型稳定性的影响越大.数值仿真表明,CAV有利于降低交通流的车辆尾部碰撞安全风险.  相似文献   

16.
智能网联卡车车队有望成为网联自动驾驶率先应用的场景之一,本文针对智能网联卡车车队混合交通流通行能力开展研究。首先,以智能网联卡车车队、人工驾驶卡车及人工驾驶小汽车构成的随机混合交通流为研究对象,考虑智能网联卡车车队规模空间分布特征,分析混合交通流中10种跟驰行为类型,理论推导其概率表达式,进而构建智能网联卡车车队混合交通流通行能力的通用性分析方法。然后,考虑实际交通流运行中卡车分布的随机性,将智能网联卡车车队混合交通流分为优势流、随机流和劣势流3种态势,以此提升混合交通流通行能力分析方法的普适性。最后,选择实测数据标定的跟驰模型进行案例分析,验证理论分析方法的有效性。研究结果表明:智能网联卡车比例提高或其车队规模增大均有利于3种态势混合交通流中车辆转换系数及相对熵的减小,从而可有效提升混合交通流通行能力。不同智能网联卡车比例条件下,智能网联卡车车队随机分布最优车队规模为2~4辆,同时,优势流、随机流和劣势流3种混合交通流通行能力依次递减。研究结果揭示了智能网联卡车车队混合交通流通行能力提升的内在机理,为未来智能网联卡车车队的运营管理提供方法支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号