首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Abstract

Shifting cargo from land‐based modes to maritime transport has been a prioritized policy in many policy papers to make transport more environmental friendly. Traditional calculations of emissions per transport capacity unit have supported this. However, maritime transport may stand to loose its good environmental reputation in comparison to road transport due to (1) the sluggish processes in maritime environmental policies and the low ambition level of current regulations, (2) the much higher focus on improving the environmental efficiency of the road haulage industry, (3) the much longer economic life of vessels compared to trucks, and (4) focus on faster vessels that increase the average fuel consumption of the sea transport alternative. Through a realistic case study, the energy efficiency and emissions of alternative multimodal transport chains is presented to illustrate these points.  相似文献   

2.
This paper discusses the impact of three freight transport policies aiming to promote railroad intermodal transport in Europe, and examines the case of Belgium as a testing ground. These policies consist in subsidizing intermodal transport operations (such as in Belgium, to stimulate rail transport), internalizing external costs (as recommended by the European Union in order to foster cleaner modes), and adopting a system perspective when optimizing the location of inland intermodal terminals. The study proposes an innovative mixed integer intermodal freight location-allocation model based on hub-location theory and deals with non-linear transport costs in order to replicate economies of distance. Our analysis suggests that subsidizing has a significant impact on the volumes transported by intermodal transport, and, to a lesser extent, that optimizing terminal location increases the competitiveness of intermodal transport. On the other hand, according to our assumptions, internalizing external costs can negatively impact the promotion of intermodality. This finding indicates that innovative last-mile transports are needed in order to reduce the external impacts of drayage operations.  相似文献   

3.
To achieve transport cost reductions and to reduce the environmental impact of road transport, different European countries are allowing or testing longer and heavier vehicles on their road network. In Belgium, the Flanders region started a trial in 2015 allowing a limited number of longer and heavier vehicles on a selection of approved routes. A concern among intermodal operators is however that an allowance of longer and heavier vehicles could trigger a reverse modal shift away from rail and inland waterways container transport. Starting from experiences in other European countries, this paper discusses the potential spatial impact of allowing longer and heavier vehicles on the market areas of intermodal transhipment terminals using a geographic information systems-based location analysis model. In a second step, external transport costs are incorporated in this model, to quantify the spatially diversified societal costs of a potential reverse modal shift.  相似文献   

4.
The demand for inland freight transport in Europe is mainly met by road transport, leading to unsustainable impacts such as air pollution, greenhouse gas emissions and congestion. Since rail transport has lower externalities than road transport, a modal shift from road to rail is an accepted policy goal for achieving a more sustainable and competitive transport system. However, intermodal road–rail transport is mainly competitive for long-distance transport, and as a consequence, the potential for modal shift is limited. The cost efficiency of road–rail intermodal transport is particularly sensitive to pre- and post-haulage (PPH) costs, since this activity typically has a larger cost compared with its share of the total distance in the transport chain. For intermodal transportation over shorter distances, for example, below 300 km and where there are substantial PPH activities at both ends of the chain, the competitiveness of the intermodal transport system compared with that of direct road is low. Improving the efficiency of PPH activities is, therefore, of utmost importance for the competitiveness of the intermodal transport system. This paper looks into the issue of improving the cost efficiency of an intermodal transport chain by implementing an innovative and flexible legal framework regarding the PPH activities in the chain. By extending the legal framework with exemptions for longer vehicles in PPH, the cost efficiency could be greatly improved. The purpose of such a framework is to allow and enable, for PPH exclusively, the use of 2?×?40 foot or even two semi-trailers using only one vehicle in the context of the Swedish regulatory framework. This paper develops a strategic calculation model for assessing and investigating the consequences of such a framework and investigates the framework's potential in terms of cost efficiency. The model in combination with a sensitivity analysis of input variables gives a comprehensive understanding of the effects of PPH under different circumstances. From the results, it is evident that there are substantial positive effects associated with a PPH framework of longer vehicles. Results indicate that a typical shipper may experience cost reductions of about 5–10% of the total costs of the intermodal transport chain. In summary, a more innovative and flexible legal framework regarding vehicle length in the PPH links can contribute to a greater modal shift, improved cost efficiency and more environmentally friendly transportation systems.  相似文献   

5.
Complexity in transport networks evokes the need for instant response to the changing dynamics and uncertainties in the upstream operations, where multiple modes of transport are often available, but rarely used in conjunction. This paper proposes a model for strategic transport planning involving a network wide intermodal transport system. The system determines the spatio-temporal states of road based freight networks (unimodal) and future traffic flow in definite time intervals. This information is processed to devise efficient scheduling plans by coordinating and connecting existing rail transport schedules to road based freight systems (intermodal). The traffic flow estimation is performed by kernel based support vector mechanisms while mixed integer programming (MIP) is used to optimize schedules for intermodal transport network by considering various costs and additional capacity constraints. The model has been successfully applied to an existing Fast Moving Consumer Goods (FMCG) distribution network in India with encouraging results.  相似文献   

6.
This paper develops a model for calculating comparable combined internal and external costs of intermodal and road freight transport networks. Internal costs consist of the operational-private costs borne by the transport and intermodal terminal operators, and the time costs of goods tied in transit. The external costs include the costs of the impacts of both networks on society and the environment such as local and global air pollution, congestion, noise pollution, and traffic accidents. The model is applied to the simplified configurations of both networks using the inputs from the European freight transport system. The objective is to investigate some effects of European Union policy, which aims to internalise the external costs of transport, on the prospective competition between two networks from a social perspective.  相似文献   

7.
This paper presents the impact of fuel price increases on the market area of intermodal transport terminals. Aim of this research is to determine whether an increase in fuel prices is sufficient enough to raise the market area of intermodal transport to the same degree that would be accomplished by stimulating intermodal transport through policy instruments. Therefore, several fuel price scenarios are analysed in order to verify the impact of different fuel price evolutions on the market area of unimodal road transport compared to intermodal transport in Belgium. The LAMBIT-model (Location Analysis for Belgian Intermodal Terminals), which is a GIS-based model (Macharis and Pekin, 2008), is used to analyse the different fuel price increases and enables a visualisation of the impact on the market area. The LAMBIT model incorporates the different network layers for each transport mode by setting up a GIS network that includes four different layers: the road network, the rail network, the inland waterways network and the final haulage network. The geographic locations of the intermodal terminals and the port of Antwerp are added as nodes in the network and the Belgian municipality centres are defined and connected to the different network layers. Based on the different fuel price scenarios representing respectively a fuel price increase with 10% (low price case), 50% (business as usual case) and 90% (high price case), the results of the LAMBIT model show that the market areas rise in favour of intermodal barge/road and intermodal rail/road. Depending on the scenario, the degree of modal shift however differs. Additionally, in order to compare policy measures with the effect of a fuel price increase, the internalisation of the external costs is analysed with the LAMBIT model. For some years, the European Commission is supporting the idea that transportation costs should reflect the true impacts on environment and society, and is relentlessly pushing towards the so called ‘internalisation of external costs’ as a policy instrument in order to establish fair and efficient pricing of different transport modes. This requires monetarizing the external effects of transport and adding them to the already internalized costs in order to give the correct price signals. Results of this comparative analysis performed with the LAMBIT model are also presented in this paper.  相似文献   

8.
Intermodal rail/road transportation combines advantages of both modes of transport and is often seen as an effective approach for reducing the environmental impact of freight transportation. This is because it is often expected that rail transportation emits less greenhouse gases than road transportation. However, the actual emissions of both modes of transport depend on various factors like vehicle type, traction type, fuel emission factors, payload utilization, slope profile or traffic conditions. Still, comprehensive experimental results for estimating emission rates from heavy and voluminous goods in large-scale transportation systems are hardly available so far. This study describes an intermodal rail/road network model that covers the majority of European countries. Using this network model, we estimate emission rates with a mesoscopic model within and between the considered countries by conducting a large-scale simulation of road-only transports and intermodal transports. We show that there are high variations of emission rates for both road-only transportation and intermodal rail/road transportation over the different transport relations in Europe. We found that intermodal routing is more eco-friendly than road-only routing for more than 90% of the simulated shipments. Again, this value varies strongly among country pairs.  相似文献   

9.
This paper is about distance and time as factors of competitiveness of intermodal transport. It reviews the relevance of the factors, evaluates time models in practice, compares network distances and times in alternative bundling networks with geometrically varied layouts, and points out how these networks perform in terms of vehicle scale, frequency and door-to-door time. The analysis focuses on intermodal transport in Europe, especially intermodal rail transport, but is in search for generic conclusions. The paper does not incorporate the distance and time results in cost models, and draws conclusions for transport innovation, wherever this is possible without cost modelling. For instance, the feature vehicle scale, an important factor of transport costs, is analysed and discussed.Distance and time are important factors of competitiveness of intermodal transport. They generate (direct) vehicle costs and – via transport quality – indirect costs to the customers. Clearly direct costs/prices are the most important performance of the intermodal transport system. The relevance of quality performances is less clarified. Customers emphasise the importance of a good match between the transport and the logistic system. In this framework (time) reliability is valued high. Often transport time, arrival and departure times, and frequency have a lower priority. But such conclusions can hardy be generalised. The range of valuations reflects the heterogeneity of situations. Some lack of clarity is obviously due to overlapping definitions of different performance types.The following parts of the paper are about two central fields of network design, which have a large impact on transport costs and quality, namely the design of vehicle roundtrips (and acceleration of transport speed) and the choice of bundling type: do vehicles provide direct services or run in what we call complex bundling networks? An example is the hub-and-spoke network. The objective of complex bundling is to increase vehicle scale and/or transport frequency even if network volumes are restricted. Complex bundling requires intermediate nodes for the exchange of load units. Examples of complex bundling networks are the hub-and-spoke network or the line network.Roundtrip and bundling design are interrelated policy fields: an acceleration of the roundtrip speed, often desirable from the cost point of view, can often only be carried out customer friendly, if the transport frequency is increased. But often the flow size is not sufficient for a higher frequency. Then a change of bundling model can be an outcome.Complex bundling networks are known to have longer average distances and times, the latter also due to the presence of additional intermediate exchange nodes. However, this disadvantage is – inside the limits of maximal vehicle sizes – overruled by the advantage of a restricted number of network links. Therefore generally, complex bundling networks have shorter total vehicle distances and times. This expression of economies of scale implies lower vehicle costs per load unit.The last part of the paper presents door-to-door times of load units of complex bundling networks and compares them with unimodal road transport. The times of complex bundling networks are larger than that of networks with direct connections, but nevertheless competitive with unimodal road transport, except for short distances.  相似文献   

10.
Intermodal rail/road freight transport has always been considered as a competitive alternative to its road freight counterpart in the European medium- to long-distance corridors (markets). Such consideration has been based on the increasing competitiveness of some innovative rail services and the existing and prospective performance of both modes in terms of the full social – internal or operational and external – costs. The most recent innovation of rail technologies and related services launched by some European railway companies, still at the conceptual level, is the Long Intermodal Freight Train (LIFT). This is supposed to be a block train operating in long-distance corridors (markets) with a substantial and regular freight demand.This paper develops analytical models for assessing the performance of the LIFTs, the already-operating Conventional Intermodal Freight Trains (CIFTs), and their road counterpart as well. The performance consists of the full – internal (private) and external – costs of the door-to-door delivery of loading units – containers, swap-bodies, and semi-trailers. The internal costs embrace the operational costs of the transport (rail and road) and intermodal terminal operators. The external costs include the costs of the impacts of door-to-door delivery of loading units on society and the environment. These negative externalities include noise, air pollution, traffic accidents, and congestion.The models are applied to a simplified version of intermodal and road transport system using inputs from the European freight transport sector. The aims are to compare the full costs of particular modalities in order to investigate the potential of the LIFTs as compared with the CIFTs in improving the internal efficiency of the rail freight sector and its competitiveness with respect to its road counterpart. In addition, the paper attempts to assess some effects on the potential modal shift of EU (European Union) transport policies on internalizing transport externalities.  相似文献   

11.
Intermodal rail/road transportation is an instrument of green logistics, which may help reducing transport related greenhouse gas (GHG) emissions. In order to assess the environmental impact of road and rail transports, researchers have formulated very detailed microscopic models, which determine vehicle emissions precisely based on a vast number of parameters. They also developed macroscopic models, which estimate emissions more roughly from few parameters that are considered most influential. One of the goals of this paper is to develop mesoscopic models that combine the preciseness of micro-models while requiring only little more information than macro-models. We propose emission models designed for transport planning purposes which are simple to calibrate by transport managers. Despite their compactness, our models are able to reflect the influence of various traffic conditions on a transport’s total emissions. Furthermore, contrasting most papers considering either the road or the rail mode, we provide models on a common basis for both modes of transportation. We validate our models using popular micro- and macroscopic models and we apply them to artificial and real world transport scenarios to identify under which circumstances intermodal transports actually effect lower emissions. We find that travel speed and country-specific energy emission factors influence the eco-friendliness of intermodal transports most severely. Hence, the particular route chosen for a transnational intermodal transport is an important but so far neglected option for eco-friendly transportation.  相似文献   

12.
We use social-eco-efficient analysis in the form of SEEbalance to evaluate gravel transport sustainability for trucking and two kinds of intermodal transportation. Results show that switching from trucks to intermodal transportation can improve the sustainability of gravel transportation in the northeast corridor of Taiwan. Sensitivity analysis shows that rail combined with truck intermodal transportation has competitive advantage despite the terminal’s location factor.  相似文献   

13.

The paper considers in detail strategic changes occurring in the organizational context of intermodal transportation and discusses the application of economic approaches (primarily transaction-cost economics) for assessing the effectiveness of the appropriate governance structure in organizing the intermodal transport economic system. The paper reviews the developments in intermodal transportation, particularly in the context of logistics and supply chain management, and recognizes the trend for the formation of one-stop shopping megacarriers spurred by deregulation and market requirements. This culminates in the need to consider how companies should organize the economic governance of the intermodal transport system. The main governance structures include market (subcontracting) or hierarchy (internal organization). The transaction-cost economics approach is reviewed and applied at a conceptual level to provide the core basis upon which the assessment of the optimal governance structure in intermodal transport can be based. The review of the core economic principles indicates that the governance structure in intermodal transport is dependent on transaction costs, production costs and strategic considerations that a particular structure might entail and the policy implications thereof. The potential for empirical research in the application of the transaction-cost economics approach to intermodal transport is discussed and detailed direction for further empirical research is provided as well as discussion of policy implications particularly with respect to competition and antitrust.  相似文献   

14.
15.
Policies of general nature for improving the competitive position of intermodal transport have not always been successful. On the contrary, specific policies, such as targeting the supply chain or the offered services and transport are probably more effective in identifying and subsequently shifting transport from road to intermodal. The aim of the paper is the development of a methodology with the necessary tools to assess the potential of a specific policy measure to produce a modal shift in favour of intermodal transport. In addition, for the cases of positive outcomes, the necessary elements for the policy action plan are presented. The methodology comprises of three parts: a toolbox called the macro-scan, which assesses the potential for modal shift, a sensitivity analysis and the policy action plan. Thus, an insight on the impact of a modal shift on supply chains and on the potential for modal shift is acquired. The methodology, developed within the SPIN Research Project of the European Commission, will be useful to policy makers at governmental level as well as to the private sector, especially in the European Union countries.  相似文献   

16.
The recent development of Intelligent Transportation Systems offers the possibility of cooperative planning of multi-actor systems in a distributed framework, by enabling prompt exchange of information among actors. This paper proposes a modeling framework for cooperation in intermodal freight transport chains as multi-actor systems. In this framework, the problem of optimizing freight transportation is decomposed into a suitable set of sub-problems, each representing the operations of an actor which are connected using a negotiation scheme. A Discrete Event model is developed which optimizes the system on a rolling horizon basis to account for the dynamics of intermodal freight transport operations. This framework allows for an event driven short/medium term planning of intermodal freight transport chains. The proposed methodology is evaluated using a realistic case study, and the results are compared against the First-Come-First-Served strategy, highlighting the significance of cooperation in systems operating close to capacity.  相似文献   

17.
To enhance the efficiency of intermodal transportation for large quantities of goods, the current sea–land transportation system has been reviewed and systematically analyzed, and a bottleneck is pinpointed in the linkage or goods transfer between the waterway and railway. The bottleneck impacts the efficiency of the goods through transportation combining the two modes. To eliminate the existing bottleneck and inefficiency towards intermodality, a new type of flexible double-rail track has recently been invented together with innovations both in trestle bridges and in train ferries. The outcomes of the research in progress show that the flexible double-rail track is feasible from the viewpoints of both geometry and engineering mechanics, it can be used to improve the compatibility of a trestle bridge with various types of train ferries and hence it can support the development of train ferries on a large scale. Based on the innovations, an integrated sea–land transportation system model is proposed as a systematic solution, which is expected to effectively overcome the existing bottleneck and to enhance the efficiency of the whole sea–land combined transportation. Further research on this system model and its major components is also addressed in the paper.  相似文献   

18.
Abstract

The choice of location for an intermodal transport terminal is an important component in a regional logistics system and a paramount decision for the investor as well as the community affected. The investor needs a realistic estimation of traffic potentials and incorporated cost-estimates of a location, since it serves as an important input to the investment decision process. Policy makers need instruments and tools to analyse the effect of intermodal terminals on the surrounding environment, which also enables a comparison between several possible locations in order to ensure sustainability and long-term competitiveness. The model in this paper allows a comparative evaluation of a set of possible intermodal terminal locations based on considerations by relevant actors. Furthermore, it presents a process of retrieving data and effectively communicating results. Considerations and interests of stakeholders are incorporated into the approach by means of evaluative criteria. The approach aims at facilitating the planning process of regional logistics systems in general and the evaluation process of intermodal terminal locations in particular by considering both public and private interests focusing on economic and environmental aspects.  相似文献   

19.
This paper presents a quantitative method for characterizing high speed train stations in terms of passenger intermodality. The aim of the procedure is two-fold: firstly, the method is to be used as an objective measure for comparing stations in order to detect suboptimal points and improve the performance of stations as nodal points; secondly, the method provides a means to embed intermodality into regional accessibility models, allowing comprehensive modelling at lower scales. The empirical base of the work comprises data from 27 European high speed rail stations, which is deemed an appropriate statistical sample for the whole European rail network. Using the entropy metric, we found that several different patterns emerged: there was a clear hierarchy of stations which was linked to their respective roles within the system, while strong constraints impeded stations from performing optimally as true intermodal nodes.  相似文献   

20.
Intermodal freight transport has developed into a significant sector of the transport industry in its own right. This development has been followed by an increase in intermodal freight transportation research. We contend that a new transportation research application field is emerging; and that, while still in a pre-paradigmatic phase, it is now time to move on to a more mature independent research field. An independent research field can be justified because intermodal transport is a complex system that has characteristics which distinguishes it from other transport systems. We have reviewed 92 publications in order to identify the characteristics of the intermodal research community and scientific knowledge base. This paper will discuss aspects of this research, assessing the status quo and seeking directions for the future. To conclude, we will propose an intermodal research agenda which can direct the intermodal research field towards a period of “normal science”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号