首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
研究目的:大跨度混凝土桥上铺设无砟轨道和无缝线路是我国客运专线建设的关键技术之一,对桥梁和轨道工程都是一个严峻考验。对于长大混凝土桥上无缝线路,是否设置钢轨伸缩调节器是困扰长大混凝土桥上无缝线路设计的难题。本文对我国大跨度桥梁无砟轨道无缝线路设计进行研究分析。研究结论:通过对我国大跨度桥梁无砟轨道无缝线路设计研究分析和既有长大混凝土桥梁工点无砟轨道无缝线路运营情况现场调研发现;(1)铺设无砟轨道的大跨度混凝土桥梁温度跨度超过一定范围将引起轨道结构的病害;(2)通过在桥上采用小阻力扣件即减小桥上扣件的纵向阻力,可以降低钢轨最大纵向附加力及轨道结构的受力;(3)随着桥梁温差取值的增大,钢轨与桥墩受力及轨道和桥梁结构的变形都有明显增大;(4)必须加大大跨度桥上无缝线路监测的力度,加强无缝线路设计参数的试验研究。  相似文献   

2.
高速铁路无砟轨道振动分析   总被引:2,自引:1,他引:1  
研究目的:通过建立考虑线路随机不平顺的轨道结构连续双层梁模型,提出分析高速铁路弹性支承块式无砟轨道结构振动的数值方法,为无砟轨道结构设计提供指导.研究结论:对轨道结构振动方程进行傅里叶变换,求解傅里叶变换域中的振动位移,再通过快速离散傅里叶逆变换得到轨道结构的振动响应.线路随机不平顺是根据实测的功率谱函数在计算机上生成的.相对于其它复杂的车辆-轨道耦合动力学模型,该方法简单可行,借助于Matlab软件使得程序编制容易实现,且能反映轨道振动的基本规律和特点,尤其适合于整趟列车通过时轨道结构振动分析的情况.作为应用实例,对高速铁路弹性支承块式无砟轨道进行了振动分析,分析了线路不平顺等级、轨枕垫板和弹性扣件刚度、轨道基础刚度和列车速度对轨道振动的影响,得到了轨枕块橡胶垫板静刚度和橡胶套靴静刚度的合理设计值范围分别为60~90 MN/m和120~150 MN/m.  相似文献   

3.
随着桥上无缝线路在运营中出现各种病害,桥上无砟轨道的横向稳定性问题越来越引起重视。基于梁轨相互作用原理,利用有限元方法,建立桥上CRTSⅢ型板式无砟轨道横向稳定性分析模型,分别计算分析梁体在均匀温度和双向温度梯度下对无砟轨道结构横向变形的影响,有益于进一步深入研究桥上无砟轨道的横向变形机理。结果表明:与均匀温度荷载相比,双向温度梯度荷载对无砟轨道结构横向变形影响相对较小,但对钢轨轨距的影响较大,桥上无砟轨道结构的横向稳定性受梁体伸缩附加力与梁体几何形变的共同影响。因此建议在设计桥上无缝线路时,无论考虑哪种梁体温差荷载,都需要对桥上无砟轨道结构的横向稳定性进行检算。  相似文献   

4.
桥上无缝道岔是在高速铁路、艰险山区铁路上铺设跨区间无缝线路不可避免的技术难题,同时跨越震区时,道岔结构自身处于双层薄弱环节之中。根据地震作用下有砟轨道桥上无缝道岔梁轨相互作用原理,建立地震作用下岔-桥-墩动力非线性有限元模型,分析地震波频谱特性、地震动加速度峰值、岔区阻力、梁体温差等因素下的有砟轨道桥上无缝道岔地震作用响应规律。研究结果表明:无缝道岔约束作用较大提高了桥梁结构的低阶自振频率,而且改变了其振动形态;地震波频谱特性和加速度峰值大小对桥上无缝道岔响应影响显著,地震荷载波频越靠近结构主频,加速度峰值越大,桥上无缝道岔受力和变形越大;在钢轨温变较高,又同时考虑地震荷载效应时,钢轨强度和线路稳定性均得不到保障,建议对跨越震区的桥上无缝道岔设计时检算地震荷载与钢轨、梁体温变共同作用时的钢轨纵向力以及道岔联结件受力、关键位置相对位移等。  相似文献   

5.
温度力作用下单元板式无砟轨道钢轨横向变形研究   总被引:1,自引:1,他引:0  
为了研究无砟轨道钢轨横向稳定性,以曲线上单元板式无砟轨道无缝线路为对象,建立包括钢轨、扣件、轨道板和限位部件的无砟轨道钢轨横向变形计算模型,结合不同轨道板长度分析钢轨在温度力作用下的横向变形特性,讨论不同、限位部件弹性和初始弯曲半波长对钢轨横向变形幅值和扣件横向抗力的影响。计算表明,巨大温度力可导致钢轨沿线路纵向产生以轨道板为波长的周期横向不平顺,在小半径曲线地段,应采用刚度较大且塑性变形小的弹性限位垫层材料,重视半波长过小的初始弯曲的治理,并加强对钢轨横向位移和板端扣件使用状态的监测。  相似文献   

6.
桥上无砟轨道受力比较复杂,桥上无砟轨道无缝线路的稳定性直接影响高速列车的行车平稳与安全。基于有限元法和梁轨相互作用理论,建立了6×32 m混凝土简支梁桥上CRTSⅠ型板式无砟轨道无缝线路空间耦合模型,研究温度荷载作用下钢轨、轨道板及底座板的受力变形特性,并对相关影响参数进行分析。结果表明:在温度荷载作用下,钢轨伸缩力的峰值出现在桥梁墩台及跨中,钢轨的纵向位移呈现先增后减的趋势,在中间两跨达到最大值,钢轨和轨道板的纵向伸缩趋势基本一致,表明扣件起到了很好的约束作用;桥上采用小阻力扣件可改善桥上无缝线路梁轨相互作用,但要充分考虑轨板相对位移不能过大,保证钢轨在桥台处的爬行能够得到有效控制;从减小桥上轨道结构伸缩力及纵向位移考虑,桥梁墩台固定端纵向刚度不宜过大。  相似文献   

7.
建立了无砟轨道线桥墩一体化计算模型,用数值模拟法,以一组60 kg/m钢轨客运专线18号可动心轨道岔布置在连续梁上为例,通过两种类型("门"形筋混凝土道床、带限凸台的道床板)无砟轨道桥上无缝道岔与有砟轨道桥上无缝道岔基本轨温度附加力、基本轨伸缩位移的比较,表明:无砟轨道桥上无缝道岔温度附加力分布规律、钢轨位移分布规律与有砟轨道桥上无缝道岔相似,"门"形筋及带限位凸台无砟轨道桥上无缝道岔因道床阻力大,尖轨及心轨相对道岔板的伸缩位移要小;对于带限位凸台的无砟轨道结构计算结果表明:单个凸台的支座刚度>250 kN/mm时,凸台支座胶垫的压缩量<1 mm.道岔板不同温度变化幅度的计算结果表明,随着道岔板日温差增大,基本轨温度附加力、伸缩位移、翼轨末端间隔铁受力、直尖轨尖端相对道岔位移、转辙器道岔板受力、辙叉道岔板受力均随之减小,而心轨尖端相对道岔板位移、导曲线道岔板受力、连续梁固定墩受力则随之增大.  相似文献   

8.
通过建立 CRTS Ⅱ型板式无砟轨道结构的车辆-轨道垂向耦合动力学模型,研究在钢轨波磨不平顺激扰下,不同运营速度时轮轨力响应及轨道结构各部件的振动特性。分析结果表明:在钢轨中长波波磨激励下,运营速度的改变对轮轨力响应最大值影响较小,但对轮重减载率影响较为明显;钢轨垂向振动主要表现为中高频振动;随着运营速度增加,轨道板及底座板在中高频范围内的振动频率增加。  相似文献   

9.
无砟轨道钢轨碎弯成因分析   总被引:1,自引:0,他引:1  
对无砟轨道无缝线路钢轨碎弯成因进行了分析,认为钢轨纵向温度力、线路横向阻力和钢轨初始弯曲是影响轨条臌曲的主要因素.应用有限单元法建立了包括道床、扣件的钢轨碎弯分析模型,讨论了初始曲线线型及参数、升温幅度、轨道类型和线路阻力等对轨条碎弯幅值的影响.计算表明碎弯是无砟轨道无缝线路胀轨的表现,应严格控制初始弯曲和保证扣件横向阻力稳定,防止形成严重的轨条碎弯,影响行车安全.  相似文献   

10.
把温度力作用下的无缝线路简化为纵向力作用的弹性等间距支承的无限长均匀梁结构,通过连续梁理论,建立了纵向力作用下无缝线路钢轨的振动模型.分析了轨道结构钢轨自振频率与其纵向力间的内在关系,分别讨论了钢轨在承受纵向拉力和纵向压力时自振频率的变化特征,比较了钢轨类型改变、钢轨支承间距变化后对上述变化的影响.结果表明:纵向拉力作用下钢轨的竖向自振频率会随着拉力的增加而增大,钢轨支承间距加大会降低其自振频率;纵向压力作用下,钢轨的竖向自振频率随着压力的增加而减小;第一振型变化趋势基本分为两个阶段,当轴向压力较小时,呈线性变化,随着轴向压力的不断增加,逐渐地产生了非线性的变化;二阶及以上振型变化与受拉状态相似.  相似文献   

11.
建立轴向温度力作用下无缝线路轨道结构周期离散支承梁模型,其中钢轨采用Timoshenko梁模拟,轨枕考虑为质量块,轨下支承结构对钢轨的支承作用通过动力柔度矩阵进行模拟。通过周期结构波数有限元法,分析得到周期离散支承钢轨的频散特性及位移响应。分析周期离散支承钢轨各阶共振频率与轴向温度力的关系,并探讨轨枕间距的影响。分析结果表明:在0~5 000Hz范围内,周期离散支承钢轨竖向振动各阶共振频率均随轴向拉力的增加而增大,随轴向压力的增加而减小,且共振频率越高,其受轴向温度力影响越明显。其中,共振频率D(1 080Hz)、G(2 947Hz)、H(4 657Hz)受轴向温度力的影响最明显,可作为无缝线路钢轨内部温度力大小的主要评价指标。轨枕间距对各阶共振频率有较大影响,分析时需先确定轨枕间距实际值。  相似文献   

12.
研究目的:分析客货混运铁路专线客车及货车引起轨道振动的规律。研究方法:通过建立考虑线路随机不平顺的轨道结构连续3层梁模型,论述了运用傅里叶变换法分析轨道结构振动的方法。首先对轨道结构振动方程进行傅里叶变换,求解傅里叶变换域中的振动位移,再通过快速离散傅里叶逆变换得到轨道结构的振动响应。研究结果:分析了客、货列车以不同速度运行时对轨道结构振动的影响。研究表明,在客货混运的铁路专线上,最不利的工况应是货车。在同样的列车速度条件下,货车引起的轨道位移比客车大45%~50%,货车引起的轨道加速度比客车大40%~50%,货车引起的轨道动压力比客车大50%~60%。研究结论:客货混运铁路专线比客运专线和货运专线更易损坏,建设客、货分离的铁路专线是有效的解决方法。  相似文献   

13.
桥梁温度跨度对双块式无砟轨道无缝线路的影响研究   总被引:1,自引:1,他引:0  
为研究桥梁温度跨度对桥上双块式无砟轨道无缝线路的影响,运用线板桥墩一体化模型,计算不同温度跨度下,分别采用常阻力和小阻力扣件时的钢轨纵向力、道床板纵向力、抗剪凸台纵向力、梁轨相对位移以及钢轨断缝,分析桥梁温度跨度对轨道结构强度与变形的影响。结果表明:(1)随着桥梁温度跨度的增加,钢轨伸缩、挠曲、制动附加力和梁轨相对位移均增大;道床板、抗剪凸台纵向力和钢轨断缝保持不变。(2)扣件阻力减小时,轨道结构纵向力均减小;但梁轨相对位移和钢轨断缝增大。(3)为保证钢轨强度要求,当桥上铺设常阻力扣件时,桥梁温度跨度限值可取135m;当桥上铺设小阻力扣件时,桥梁温度跨度限值可取250m。  相似文献   

14.
研究目的:分析无砟轨道基础上无缝道岔的纵向力传递机理,建立无砟无缝道岔计算模型,采用有限单元法计算了无砟无缝道岔受力及变形,并与有砟轨道无缝道岔进行了对比分析,为无砟无缝道岔设计提供参考依据。研究结果:无砟轨道基础上无缝道岔的纵向力传递机理、温度力和位移分布规律与有砟轨道无缝道岔明显不同。  相似文献   

15.
为研究大跨桥上无缝线路CRTSⅢ板式无砟轨道的适应性,运用线板桥墩一体化计算模型,计算不同温度跨度下,分别采用常阻力和小阻力扣件时的钢轨纵向力、道床板纵向力及作用在桥墩上的断轨力,分析桥梁温度跨度对轨道结构受力的影响。  相似文献   

16.
客运专线无砟轨道无缝线路锁定轨温确定方法的探讨   总被引:2,自引:0,他引:2  
根据客运专线无砟轨道无缝线路的结构和受力特点,采用现场试验、调研和动力仿真等方法对既有无砟轨道无缝线路锁定轨温的影响因素进行系统分析。研究结果表明:锁定轨温降低后,无缝线路温升幅度增大,温降幅度减小,将导致无缝线路施工和维护困难、钢轨发生碎弯几率增大等问题,影响高速列车运行的平稳性和安全性;在确定客运专线无砟轨道无缝线路锁定轨温时,除了要对无缝线路的强度、稳定性等进行常规检算外,还应结合车辆-轨道耦合动力学理论进行升温条件下钢轨碎弯变形的检算,从而确定合理的锁定轨温范围。为此建议对无砟轨道无缝线路碎弯变形的产生机理、不利影响及钢轨的合理断缝允许值进行静、动力学理论分析和试验研究。  相似文献   

17.
大跨度提篮拱桥上无缝线路设计关键技术研究   总被引:2,自引:0,他引:2  
研究目的:通过研究提篮拱桥在温度变化、列车荷载作用下的变形规律,并建立铺设无砟轨道的大跨度提篮拱桥无缝线路的非线性有限元计算模型,进行梁轨相互作用分析,计算铺设无砟轨道的140 m跨径提篮拱桥上无缝线路变形、纵向力、伸缩位移、挠曲位移,为桥梁和无缝线路设计检算提供支持.研究结论:在计算提篮拱桥的伸缩力时,可采用与常见简支梁或连续梁相同的方法计算梁的伸缩位移量;在列车荷载作用下提篮拱产生的最大挠曲位移明显小于伸缩位移,钢轨挠曲力较钢轨伸缩力小,挠曲力一般不控制轨道检算,但可能控制墩台的设计检算.  相似文献   

18.
在高墩大跨桥梁中,由于夏季太阳辐射作用混凝土结构会出现膨胀,桥墩整体升温会导致墩顶竖向位移增加,从而引起桥上无缝线路纵向附加力和钢轨竖向位移。为研究桥墩整体升温对无砟轨道中轨道部件受力和变形的影响,基于梁轨相互作用原理,利用有限元方法,建立线—桥—墩一体化模型,分析高墩大跨桥墩升温条件下桥上无砟轨道无缝线路的受力以及平顺性。计算结果表明:桥墩整体升温对钢轨的纵向力、梁轨相对位移、凸台树脂变形和凸台受力的影响均很小,在无缝线路设计和检算时可以不考虑其对钢轨强度的影响,但会引起线路竖向不平顺,且主要是长波不平顺。  相似文献   

19.
桥上纵连板式无砟轨道无缝线路力学性能分析   总被引:1,自引:0,他引:1  
基于有限元法,考虑钢轨、无砟道床、滑动层、桥梁等结构的相互作用关系,建立桥上纵连板式无砟轨道无缝线路纵-横-垂向空间耦合模型,进行滑动层摩擦系数、扣件纵向阻力、无砟道床伸缩刚度等对桥上纵连板式无砟轨道无缝线路的受力和变形影响规律的研究.结果表明:滑动层减弱了桥梁、轨道间的相互作用,当滑动层摩擦系数为0.1~0.5时,无缝线路伸缩力仅为22.821~55.361 kN,远小于一般桥上无缝线路结构;滑动层摩擦系数越小越有利于轨道和桥梁结构的安全使用;底座板/轨道板的伸缩刚度减小会明显增大部分轨道和桥梁的受力,伸缩刚度折减至10%时,伸缩力会增大近6倍,因此应该注意控制底座板和轨道板的开裂现象;扣件的纵向阻力变化对轨道和桥梁结构的受力和变形几乎没有影响,但为了防止钢轨爬行或断缝值超限,扣件阻力不宜太小.  相似文献   

20.
研究目的:为对比桥上铺设不同无砟轨道时对应无缝线路受力规律,本文基于有限元方法及梁轨相互作用原理,分别建立大跨度桥上纵连板式、单元板式及双块式无砟轨道有限元模型,分析实测温度工况及制挠力耦合作用下,不同无砟轨道对应的无缝线路受力规律及桥梁理论最大温度跨度,并比较制动墩墩顶刚度、扣件阻力等参数对无缝线路受力及最大温度跨度的影响。研究结论:(1)相同桥梁温度跨度下,双块式无砟轨道钢轨附加应力最大,纵连板式无砟轨道钢轨附加应力最小,且纵连板式无砟轨道钢轨附加应力远小于铺设单元板式或双块式无砟轨道时对应钢轨附加应力;(2)采用常阻力扣件时,当制动墩墩顶刚度由1 500 k N/cm增大到8 000 k N/cm时,单元板式无砟轨道最大温度跨度由93.3 m增大到105 m,双块式无砟轨道最大温度跨度由60 m增大到75.8 m,而纵连板式无砟轨道钢轨附加应力受墩顶刚度的影响很小;(3)纵连板式无砟轨道对应桥梁最大温度跨度需同时考虑钢轨附加应力及墩顶纵向位移限值;(4)扣件阻力大小对单元板式及双块式无砟轨道钢轨附加应力影响较大,采用小阻力扣件后,两者对应最大温度跨度分别增大约1.5、2.0倍,小阻力扣件可以有效的减小单元板式及双块式无砟轨道钢轨附加应力;(5)本研究成果可为不同无砟轨道应用及对应桥梁跨度设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号