首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
In this paper, a roll and pitch independently tuned hydraulically interconnected passive suspension is presented. Due to decoupling of vibration modes and the improved lateral and longitudinal stability, the stiffness of individual suspension spring can be reduced for improving ride comfort and road grip. A generalised 14 degree-of-freedom nonlinear vehicle model with anti-roll bars is established to investigate the vehicle ride and handling dynamic responses. The nonlinear fluidic model of the hydraulically interconnected suspension is developed and integrated with the full vehicle model to investigate the anti-roll and anti-pitch characteristics. Time domain analysis of the vehicle model with the proposed suspension is conducted under different road excitations and steering/braking manoeuvres. The dynamic responses are compared with conventional suspensions to demonstrate the potential of enhanced ride and handling performance. The results illustrate the model-decoupling property of the hydraulically interconnected system. The anti-roll and anti-pitch performance could be tuned independently by the interconnected systems. With the improved anti-roll and anti-pitch characteristics, the bounce stiffness and ride damping can be optimised for better ride comfort and tyre grip.  相似文献   

12.
13.
14.
A sliding-mode observer is designed to estimate the vehicle velocity with the measured vehicle acceleration, the wheel speeds and the braking torques. Based on the Burckhardt tyre model, the extended Kalman filter is designed to estimate the parameters of the Burckhardt model with the estimated vehicle velocity, the measured wheel speeds and the vehicle acceleration. According to the estimated parameters of the Burckhardt tyre model, the tyre/road friction coefficients and the optimal slip ratios are calculated. A vehicle adaptive sliding-mode control (SMC) algorithm is presented with the estimated vehicle velocity, the tyre/road friction coefficients and the optimal slip ratios. And the adjustment method of the sliding-mode gain factors is discussed. Based on the adaptive SMC algorithm, a vehicle's antilock braking system (ABS) control system model is built with the Simulink Toolbox. Under the single-road condition as well as the different road conditions, the performance of the vehicle ABS system is simulated with the vehicle velocity observer, the tyre/road friction coefficient estimator and the adaptive SMC algorithm. The results indicate that the estimated errors of the vehicle velocity and the tyre/road friction coefficients are acceptable and the vehicle ABS adaptive SMC algorithm is effective. So the proposed adaptive SMC algorithm can be used to control the vehicle ABS without the information of the vehicle velocity and the road conditions.  相似文献   

15.
In the first part of this study, the potential performance benefits of fluidically coupled passive suspensions were demonstrated through analyses of suspension properties, design flexibility and feasibility. In this second part of the study, the dynamic responses of a vehicle equipped with different configurations of fluidically coupled hydro-pneumatic suspension systems are investigated for more comprehensive assessments of the coupled suspension concepts. A generalised 14 degree-of-freedom nonlinear vehicle model is developed and validated to evaluate vehicle ride and handling dynamic responses and suspension anti-roll and anti-pitch characteristics under various road excitations and steering/braking manoeuvres. The dynamic responses of the vehicle model with the coupled suspension are compared with those of the unconnected suspensions to demonstrate the performance potential of the fluidic couplings. The dynamic responses together with the suspension properties suggest that the full-vehicle-coupled hydro-pneumatic suspension could offer considerable potential in realising enhanced ride and handling performance, as well as improved anti-roll and anti-pitch properties in a very flexible and energy-saving manner.  相似文献   

16.
This paper deals with in-curve vehicle lateral behaviour and is aimed to find out which vehicle physical characteristics affect significantly its stability. Two different analytical methods, one numerical (phase plane) and the other graphical (handling diagram) are discussed. The numerical model refers to the complete quadricycle, while the graphical one refers to a bicycle model. Both models take into account lateral load transfers and nonlinear Pacejka tyre–road interactions. The influence of centre of mass longitudinal position, tyre cornering stiffness and front/rear roll stiffness ratio on vehicle stability are analysed. The presented results are in good agreement with theoretical expectations about the above parameters influence, and show how some physical characteristics behave as saddle-node bifurcation parameters.  相似文献   

17.
This paper describes the initial phase of work carried out as part of an on going study investigating the interaction between the tyre, suspension system and an antilock braking system (ABS). The modelling, analysis simulations and integration of results have been performed using an industry standard Multibody Systems Analysis (MBS) program. A quarter vehicle model has been used together with an individual front suspension system represented by interconnected rigid bodies. The tyre model used can be integrated into vehicle handling simulations but only the theory associated with the generation of longitudinal braking forces is described here. An ABS model based on slip control has been used to formulate the braking forces described in this paper. The simulations, which have been performed braking on wet and dry road surfaces, compare the performance of two different tyres.  相似文献   

18.
In this article, an adaptive integrated control algorithm based on active front steering and direct yaw moment control using direct Lyapunov method is proposed. Variation of cornering stiffness is considered through adaptation laws in the algorithm to ensure robustness of the integrated controller. A simple two degrees of freedom (DOF) vehicle model is used to develop the control algorithm. To evaluate the control algorithm developed here, a nonlinear eight-DOF vehicle model along with a combined-slip tyre model and a single-point preview driver model are used. Control commands are executed through correction steering angle on front wheels and braking torque applied on one of the four wheels. Simulation of a double lane change manoeuvre using Matlab®/Simulink is used for evaluation of the control algorithm. Simulation results show that the integrated control algorithm can significantly enhance vehicle stability during emergency evasive manoeuvres on various road conditions ranging from dry asphalt to very slippery packed snow road surfaces.  相似文献   

19.
《JSAE Review》1999,20(4):505-510
The ride and handling qualities of conventional delivery trucks are wores compared to modern passenger cars. However this vehicles have the power to drive as fast as passenger cars. Vehicle comfort and driving safety are mostly influenced by vertical accelerations and vehicle movements caused by pitch and roll motions. In the paper “Vehicle Dynamics with Adaptive or Semi-Active Suspension Systems – Demands on Software and Hardware” Wallentowitz and Ridlich have shown at AVEC'94 in which way tyre stiffness, shock absorber characteristics, spring stiffness and unsprung mass have an influence on vehicle comfort and active safety. They achieved these results by the theoretical analysis of a quarter-vehicle-model. Their examinations are extended in this paper on the model of a complete delivery truck. By the use of the multibody-simulation tool SIMPACK the road performance of a delivery truck will be analysed. Therefore a complex model of the vehicle has been built up in SIMPACK. Several computer simulations have been carried out to analyse the vehicle comfort and handling characteristics in different standard driving manoeuvres.Furthermore, the potential of improvements is shown by simulating different driving manoeuvres with the complete vehicle model by varying some vehicle characteristics such as tyre stiffness, shock absorber characteristics, spring stiffness and unsprung mass.In addition to that, simulations with models of unconventional spring- and damper-systems have been carried out to demonstrate the potential of improvements by the use of these systems. Two different controller algorithms for a semiactive and an active suspension system have been used an will be compared in this paper.  相似文献   

20.
In this paper, a systematic design with multiple hierarchical layers is adopted in the integrated chassis controller for full drive-by-wire vehicles. A reference model and the optimal preview acceleration driver model are utilised in the driver control layer to describe and realise the driver's anticipation of the vehicle's handling characteristics, respectively. Both the sliding mode control and terminal sliding mode control techniques are employed in the vehicle motion control (MC) layer to determine the MC efforts such that better tracking performance can be attained. In the tyre force allocation layer, a polygonal simplification method is proposed to deal with the constraints of the tyre adhesive limits efficiently and effectively, whereby the load transfer due to both roll and pitch is also taken into account which directly affects the constraints. By calculating the motor torque and steering angle of each wheel in the executive layer, the total workload of four wheels is minimised during normal driving, whereas the MC efforts are maximised in extreme handling conditions. The proposed controller is validated through simulation to improve vehicle stability and handling performance in both open- and closed-loop manoeuvres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号