首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
以某码头工程为例,横向排架按柔性桩台考虑,将实际结构图简化得到其计算简图;基于m法和假想嵌固点法,分别采用弹性嵌固和固端约束模拟桩土相互作用,利用ANSYS建立2种有限元模型计算水平力作用下横向排架的内力和变形;采用SPSS对计算结果进行数据统计分析。结果显示:当显著水平α取0.05时,采用m法和假想嵌固点法计算桩土相互作用对水平力作用下横向排架的内力和变形的影响无显著差异。  相似文献   

2.
基于地基系数折减法,提出了全直桩高桩排架的一个计算思路。与假想嵌固点法计算结果比较可知,地基系数折减法考虑了桩的非线性变形与群桩效应,其内力与变形与工程实际更吻合。此方法可以供高桩码头设计参考使用。  相似文献   

3.
研究了在砂性地基中采用竖向弹性地基梁法和假想嵌固点法分别定义桩土间相互作用的边界条件.以某港口工程项目为例,运用SAP2000结构分析软件,计算、比较并分析了这两种方法模拟桩土相互作用时码头横向排架中各桩的桩身变位和弯矩值.结果表明:在砂性地基中(桩为摩擦桩的情况),以假想嵌固点法计算得到的结果作为设计依据的做法偏危险;建议采用竖向弹性地基梁法,此法更为安全可靠.  相似文献   

4.
本文根据《码头结构设计规范》(JTS167-2018)分别用假想嵌固点法和M法对某码头固定吊桩基内力和位移进行了计算,得出两种方法下轴力差别不大,弯矩差值与地质条件和桩悬臂长度等因素有关,位移差距最大。建议项目前期地质不明情况下使用假想嵌固点法进行计算,而位移计算采用M法。  相似文献   

5.
横向力作用下高桩结构分析是港口工程中常见的,如何考虑桩 ̄土之间的相互作用,对结构分析结果影响较大。文章就几种不同的考虑桩 ̄土相互作用方法:假想嵌固点法、m法、P-Y曲线法在分析高桩结构时进行了比较。  相似文献   

6.
当前模拟桩土相互作用主要有m法、嵌固点法以及P-Y曲线法。文介绍P-Y曲线法模拟桩土相互作用在工程中的应用,并将其与m法及嵌固点法进行对比,证实P-Y曲线法的可行性。  相似文献   

7.
根据广州某高桩墩台结构断面图和土层参数勘察报告,建立了包含墩台、桩基及土层的三维有限元模型。桩土界面采用面面接触模型,允许桩土分离及滑移,通过接触应力反映桩基土对桩的侧压力和摩阻力。分析得出了高桩墩台在多种荷载组合下的应力场和位移场,以及各桩的弯矩图和轴力图。并进一步将有限元结果与以丰海高桩墩台计算程序为代表的传统嵌固点法计算结果相比较,分析了2种方法单桩轴力图、弯矩图的差异及原因,同时分析了桩基土对结构内力的影响,得到桩排中的最大轴力弯矩桩的位置及单桩上轴力弯矩极值点的位置,为传统的嵌固点法计算结果提供了一些修改与补充,从而为高桩墩台结构设计提供参考。  相似文献   

8.
杨锡鎏 《水运工程》2013,(12):165-170
通过在桩身一定的位置施加一个轴向弹簧,建立高桩码头的桩基计算模型。根据《高桩码头设计与施工规范》 中关于桩轴向刚性系数的计算公式,给出了不同情况下轴向弹簧刚度系数大小以及施加位置的计算方法。该方法能满足嵌 固点法和m法计算模式下桩基计算模型的轴向刚度相同且与规范规定一致。结合该方法,分别采用嵌固点法和m法建立某高 桩码头工程实例的空间有限元模型。计算结果对比表明:桩身轴力、桩顶弯矩、上部结构各构件的内力均十分接近,验证 了该方法的合理可行性,可为高桩码头结构计算提供参考。  相似文献   

9.
高桩码头结构位移产生的桩弯矩采用嵌固点法,由于嵌固点法对位移作用下计算的内力误差较大,因此计算位移产生的桩弯矩不宜采用嵌固点法,故本文提出码头结构内力计算方法,考虑了桩顶的连接情况、桩的泥上高度、桩身柔性、桩基布置等因素。得出以下结论:(1)直桩与叉桩受桩顶水平变位影响不大,但叉桩会产生轴力;桩顶刚接时产生弯矩、剪力值大于桩顶铰接。(2)在纵向水平力作用下,近似将所有基桩的桩顶合成为一个水平刚度,可减小单桩承载力,其值约为原承载力的1/20。本文所提出的计算方法能考虑桩顶的连接情况、桩的泥上高度、桩身柔性、桩基布置等因素,可为设计确定分段长度的计算方法,同时研究温差与纵向荷载作用下结构的内力与变形计算问题,具有很好的推广应用价值,并可为今后修订高桩码头设计规范时补充纵向计算内容提供参考。  相似文献   

10.
针对桩土之间的复杂受力问题,采用Recommended Practice for Planning,Designing and Constructing Fixed Offshore Platforms—Working Stress Design(API RP 2A-WSD)的桩基设计方法(用P-Y曲线弹簧模拟桩侧土体法向抗力,用T-Z曲线弹簧模拟桩侧土体轴向抗力,用Q-Z曲线弹簧模拟桩端土体轴向抗力)对高桩墩台码头进行桩基内力分析,并把计算结果同弹性嵌固法的计算结果进行比较。得出如下结论:在摩擦桩中,桩身轴力随着入土深度的增加而减小;桩身弯矩有两处反弯点,其最值发生在桩头或是入土端4d~6d处;API法计算所得的桩基最大弯矩较弹性嵌固法小。  相似文献   

11.
鲁子爱  任云 《水运工程》2014,(1):163-167
高桩码头结构计算时可以先把基桩在某深度处固定进行上部结构计算,再把计算的桩顶内力作为荷载施加到桩上进行桩-土相互作用分析。理论上讲,以简化前后的桩顶水平位移相等为条件确定嵌固点位置最为合理,但实际中难以实现。结合现场试桩资料,深入分析了超长桩在水平荷载作用下的嵌固特性,提出了嵌固深度随荷载变化的经验计算公式,实例计算结果表明效果良好。  相似文献   

12.
《水道港口》2015,(5):419-424
文章以实际工程为例,运用ANSYS三维有限元软件对高桩墩台码头进行不同计算方法下的内力对比分析,得出3种(弹性嵌固法、M法、P-Y曲线法)不同计算方法下高桩墩台结构的桩基内力值及分布情况,总结出如下结论:(1)桩身弯矩最值发生在桩头或嵌固点处,设计时注意在这些地方对桩基进行局部加强;(2)当地质资料不是很详细时,可优选采用弹性嵌固法进行计算,其计算结果对土体参数选取不太敏感。  相似文献   

13.
建设在水工平台上的建筑物单体,通常把水工平台顶面作为上部结构嵌固点,仅对上部结构进行建模计算.实际上,由于水工平台自重比上部结构各楼层的自重大很多,本身就是一个很大的地震质点,地震作用下水工平台自身变形会带动上部结构变形,进而影响上部结构的内力及配筋计算.水工平台桩底部嵌固点位置及水工平台厚度等因素对上部结构计算结果的...  相似文献   

14.
水平荷载作用下嵌岩桩变形与桩体嵌固特性有关。室内模拟试验表明,实际工程中嵌岩桩的嵌固形式介于铰接与刚接之间。醉育桩体嵌入段的剪力与弯矩的深入研究及实例计算发现,剪力对嵌固形式影响弱小,但弯矩影响较大;并得出结论:桩体嵌固特性决定于嵌入段的桩体弯矩,、嵌入直径及嵌入深度。  相似文献   

15.
规范的桩基结构等效嵌固点深度计算公式中存在一个范围参数η,其取值不同会导致计算结果相差数米,从而极大影响上部结构的计算.对工程中常用的PHC桩、钢管桩、灌注桩进行有限元分析,计算出单桩桩顶水平位移,根据材料力学基本假设,推导出梁端自由及梁端转动被约束的悬臂梁挠度曲线方程,并据此求出各种桩型的等效嵌固点深度.结合规范公式,给出η值推荐值及等效嵌固点深度计算的注意事项.研究成果可为桩基结构计算提供参考.  相似文献   

16.
为了考虑系缆墩平台和系缆墩基础之间的相互作用,文章利用三维弹性有限元法和三级别架有限元法计算系缆基础中各个桩的轴力分配。根据桩的极限承载力来计算桩的入士深度。通过工程实例的计算说明它们在实际工程设计中的应用。  相似文献   

17.
水平荷载作用下的大口径嵌岩桩嵌固特性研究   总被引:1,自引:0,他引:1  
水平荷载作用下嵌岩桩变形与桩体嵌同特性有关。室内模拟试验表明,实际工程中嵌岩桩的嵌同形式介于铰接与刚接之间。本文通过对桩体嵌入段的剪力与弯矩的深入研究及实例计算发现.剪力对嵌固形式影响弱小,但弯矩影响较大;并得出结论:桩体嵌固特性决定于嵌入段的桩体弯矩、嵌入直径及嵌入深度。  相似文献   

18.
沉入式大圆筒防波堤稳定性计算方法   总被引:4,自引:0,他引:4  
假设沉入较深土层的大圆筒防波堤的稳定性主要由土的嵌固作用维持,其工作原理与无锚板桩相似。根据大圆筒防波堤直径很大的特点,在无锚板桩计算方法的基础上,进一步考虑土体作用于简底的水平切力、简底土反力、以及简内外土体对筒壁的竖向摩擦力对稳定性的作用,建立了沉入式大圆筒防波堤满足稳定性要求的嵌固深度计算方法。通过数值计算,研究了有关参数对大圆筒防波堤稳定性的影响。  相似文献   

19.
以深圳华安液化石油气码头高桩墩台为例,从施工便利、结构受力、节省造价等方面分析码头墩台的厚度、桩基布置、桩型等的结构优化,结合实际工期要求确定适合本工程的结构型式:对系缆墩优化选择直径为1.3 m的斜钢管桩,采用锚杆嵌岩的方式;对工作平台选择直径为1.3 m的斜钢管桩,采用芯柱嵌岩的方式。  相似文献   

20.
目前,大直径嵌岩桩嵌岩深度计算结果偏差较大。针对此问题,以鼠浪湖矿石中转码头大直径嵌岩桩现场水平力试验结果为基础,对比各种公式计算出的结果。得出目前采用的几种方法计算出的嵌岩深度偏差较大,而张有龄法计算出的嵌岩深度比较符合实际情况的结论。推荐采用张有龄法计算大直径嵌岩桩的嵌岩深度,并给出计算公式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号