首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 249 毫秒
1.
近年,中国电气化铁路建设和开通里程迅猛增加,电力牵引供电系统应用了大量新技术和新设备,大大提高了高速铁路系统的可靠性、安全性,但同时也对新运营形势下的牵引供电设施维修管理提出了新的要求。  相似文献   

2.
高速铁路接触网运营供电故障问题研究   总被引:1,自引:0,他引:1  
通过对2013年高速铁路供电故障的统计分析和高速铁路供电接触网故障典型案例的剖析,提出了供电系统有效防范安全风险,大力提升高速铁路供电养护维修技术可靠性的建议。  相似文献   

3.
论述铁路供电修程修制改革思路及主要工作,阐述高速铁路接触网维修规则总体框架。从高速铁路接触网修程修制、维修机构设置与职责、检测分析与诊断、质量评价与鉴定、设备状态界定和维修技术标准等方面,对新颁《高速铁路接触网运行维修规则》的主要管理和技术创新点进行解读。  相似文献   

4.
高速铁路基础设施检测监测工作是实现基础设施状态全面感知安全风险预警、设备状态准确评价、故障诊断预测、趋势变化分析,推进实施精准维修和预防性状态修,以及提高维修效率、降低维修成本的重要手段,是确保铁路持续安全运营的重要技防保障。在分析国内外工务、电务、供电专业检测监测系统现状基础上,结合新形势下高速铁路高质量发展和工电设备修程修制改革要求,研究提出高速铁路基础设施检测监测体系框架,并对该体系功能应用和主要发展方向提出探讨和展望。  相似文献   

5.
供电安全检测监测系统(6C系统)实现对高速铁路牵引供电设备全方位、全覆盖的综合检测监测,为牵引供电设备维修提供决策支撑。充分利用6C系统检测监测数据,进行数据集中、有机融合、综合应用和信息共享,实现6C系统检测监测数据的集中管理和可视化分析,对指导高速铁路供电设备的运行检修具有非常重要的意义。  相似文献   

6.
针对当前高速铁路接触网系统在维修管理中未将供电设备运行可靠性与故障损失综合考虑的问题,采用系统故障Petri网计算模型,结合不同故障损失等级划分,构建高速铁路接触网系统风险评估模型。以维修费用最小为目标,以风险损失和维修资源限制为约束条件,引入役龄回退因子,提出高速铁路接触网系统维修计划优化模型。应用混合粒子群算法,设计优化计算程序,给出求解维修计划优化模型的方法和步骤。实例分析表明,上述维修计划模型的工程应用将在维持接触网系统较高可靠性的同时有效控制故障失效风险。  相似文献   

7.
高速铁路和客运专线的快速发展,对牵引供电系统的运行安全性提出了更高的要求,先进的检测技术和现代化的检测设备是提高牵引供电系统维修质量的保证,是实现电气化铁路状态检测和状态维修的重要手段。在刚刚闭幕的“中国铁路电气化技术装备交流大会及产品展示会”上,铁道部运输局供电部介绍了高速铁路供电的安全检测监测总体技术规范的编制过程。供电安全检测监测系统研究自2008年铁道部立题研究,直至去年年底形成征求意见稿,在广泛征求意见的基础上,2012年6月27日铁道部铁运[2012]136号“关于发布《高速铁路供电安全检测监测系统(6C系统)总体技术规范》的通知”,自2012年7月1日起实施。  相似文献   

8.
铁路高速与可持续发展   总被引:1,自引:0,他引:1  
从世界高速铁路发展40年的启示出发,对高速铁路在运载装备、土木工程、牵引供电、通讯与信号、运营及维修工程等领域的关键技术分别作了简要论述。通过对高速铁路在能源、环保、竞争力、产业链、交通链等方面的优势分析,指出国家发展高速铁路是拉动国民经济可持续发展的动力。  相似文献   

9.
简述了高速铁路的供电原理及其负荷特性,分析了高速铁路对供电系统造成的负序和谐波等电能质量问题,在分析比较了国内外现有高速铁路电能质量治理的一系列措施的基础上,提出了高速铁路电能质量治理的新思路和新措施。  相似文献   

10.
从高速铁路基础设施检测监测及数据分析应用等方面探讨中国高速铁路基础设施综合检测监测技术发展方向。面向高铁工务、电务、供电综合维修生产一体化需求,按照"资源集中、统一管理、综合应用"原则,融合发展综合巡检和搭载式检测设备、统型固定监测装置和小型专业检测仪器,构建铁路基础设施综合一体化检测监测体系;与此同时,加强铁路基础设施运维管理信息系统建设,利用数据处理、融合分析和数据挖掘技术,提前发现设备存在的安全隐患,分析掌握基础设施状态演变规律和预测其变化趋势,并依据设备技术状态进行预防式维修养护。最后,针对我国现有检测监测体系,从综合检测技术、综合维修管理技术和检测数据分析应用方面提出创新意见。  相似文献   

11.
中国高速铁路工程建设正在从重视“工程数量和规模扩张”向重视“质量安全和效益”转变。为应对新的建设模式对施工工艺提出的更高要求,立足京沈高速客运专线施工作业标准,围绕铁路客运服务信息工程,以交付安全、优质工程为目标,借鉴高速铁路客运服务系统工程设备安装经验,阐述工艺质量标准。在此基础上,建立工艺质量评定体系,对此类安装工程的实施质量进行全面评定,为打造精品客运服务信息工程提供参考。  相似文献   

12.
随着列车的不断提速,铁路信号系统作为保障机车车辆安全有序作业的重要安全设备,其软件的可靠性和安全性直接影响列车的运行安全,对铁路信号安全软件的测试就显得至关重要。通过借鉴欧洲铁路的安全相关技术,以铁路控制和防护系统软件标准EN50128为指导,重点论述了标准中软件测试各阶段的活动情况及独立性的体现,并对此标准在铁路信号安全软件测试过程中的应用进行了分析和研究。  相似文献   

13.
高速电气化铁路铜合金接触线制造技术新进展   总被引:1,自引:0,他引:1  
牵引供电系统中直接影响列车安全及运行速度的因素之一就是接触线,因此研究高速铁路接触线制造技术成为高铁建设的一个重要课题。我国在传统铜合金接触线制造技术的基础上,开发出先进的高强度接触线制造技术,可满足时速350km及以上高速铁路要求。  相似文献   

14.
随着我国铁路运输事业的快速发展,铁路信号融合现场总线及以太网技术使得铁路系统更加智能、高速和安全.本文详细介绍了一种基于TCP/IP协议的以太网络与PROFIBUS-DP工业现场总线的通信系统,实现对铁路信号设备的有效监控.  相似文献   

15.
为推进海西经济圈的快速发展,新建福州至厦门铁路;设计速度350 km/h,无砟轨道;沿线地形、地质、水文、气象等自然环境复杂,跨越海湾河道、公路、铁路众多,特殊大跨度桥梁多,桥梁占线路长度65%;主要介绍福厦铁路的建设条件,桥梁设计原则,主要技术特点以及6座大跨度斜拉桥桥梁设计情况;遵循"安全、实用、经济、美观"的设计原则,创新和丰富了我国高速铁路桥梁结构技术,将为我国高速铁路建设积累工程实践经验。  相似文献   

16.
总结目前铁路电力远动设备的调试经验,介绍既有线电力远动设备,车站自闭-贯通线分段开关控制器(FTU)和信号双电源监控装置(STU)接入调试技术和方法及注意事项。  相似文献   

17.
高速铁路异物侵限监测系统是高速铁路重要的基础设施,其监测网的安装范围正确与否将直接关系到高速铁路的运输安全,原铁道部运输局2010年颁布的《高速铁路防灾安全监控系统-公跨铁立交桥异物侵限监测方案》提供了公跨铁立交桥异物侵限监测电网设置范围的计算公式。通过举例分析发现,当公跨铁立交桥与铁路线的夹角大于70°时,该计算公式得出的计算结果偏小,甚至还会出现负值的不合理现象,对高速铁路运营安全产生不利影响,因此有必要对该计算公式进行修改完善。根据公跨铁立交桥与铁路线的夹角大小分(0,70°)、[70°,90°)、[90°,180°)三个区间进行讨论,并利用三角函数法,研究得出一整套新的计算公式。研究成果表明,用新的计算公式得出的公跨铁立交桥异物侵限监测电网设置范围更加科学合理,提高了高速铁路异物侵限监测系统的安全监控性能。  相似文献   

18.
随着科技进步和高速铁路的迅猛发展.铁路通信、信号系统正朝着智能化、自动化、信息化和多功能的方向发展,然而.这个新动向也对通信信号设备的可靠性和安全性带来了新的严峻挑战。它一方面表现在数字、无线、宽带、绿色的通信系统和智能、远程、监控、实时的信号系统其复杂程度呈指数级增长,  相似文献   

19.
高速铁路隧道综合接地系统连接结构极为复杂,接地工程隐蔽,接地系统特性直接关系到隧道内电气设备运行安全。为研究高速铁路隧道综合接地系统的接地特性,对高速铁路Ⅰ、Ⅱ级围岩隧道和Ⅲ~Ⅴ级围岩隧道综合接地系统建立仿真计算模型,计算分析两类隧道综合接地系统在不同土壤电阻率和不同隧道长度时的接地阻抗特性,以及隧道洞室内电力设施接地端子处的接地阻抗和地电位升特性。计算结果表明:Ⅰ、Ⅱ级围岩隧道和Ⅲ~Ⅴ级围岩隧道综合接地系统可以满足GB 50065—2011规定的接地安全限值;高速铁路隧道洞室内箱变等电力设施不需要布设独立接地装置,直接与隧道综合接地系统可靠相连即可。研究成果已在金温铁路扩能改造工程建设中成功应用,效果良好。  相似文献   

20.
本文通过对遂渝铁路的项目背景、设计条件的介绍,对电气化区段线路上采用的不同的接触网悬挂方式、不同的接触网零件以及不同悬挂方式情况下的安装图示,进行了分析、计算和试验对比,肯定了接触网设计要综合德国、日本、中国的标准,并在设计中灵活运用的方法,提出了今后在进行高速铁路建设中电气化设计应该注意的问题,为我国在发展山区高速电气化铁路且装载双层集装箱货物列车的设计积累了经验并通过遂渝线的试验结果说明了立足自我,学习、引进国外先进技术、设备和材料的路子是正确的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号