首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于AMESim软件建立了完整的纯电动汽车的热管理系统模型,在此模型的基础上,文章主要针对在不同环境温度下,研究空调风冷电池包系统,对电动汽车整车热管理系统及电池热管理系统优化控制,使整车热管理系统能适应不同工况和环境温度的整车热管理要求。文章基于AMESim软件对纯电动汽车热管理系统温度适应性研究及设计的方法为提供了思路和参考。  相似文献   

2.
燃料电池汽车整车热管理系统研究   总被引:1,自引:0,他引:1  
热管理系统的研究在燃料电池汽车的整车开发中有着非常重要的意义.文章对国家"863"项目中燃料电池汽车几种不同的整车热管理方案进行了研究,计算出不同设计方案下FCE、PCU散热器和空调冷凝器的散热量,并进行对比分析,得到了较优的热管理系统散热方案,同时介绍了热管理控制策略.研究结果对燃料电池汽车整车热管理系统的设计具有重要参考价值.  相似文献   

3.
李昕 《汽车电器》2023,(1):16-17+20
新能源汽车热管理是老生常谈的课题,余热回收是热管理系统中的重要环节。在整车中,产生余热的零部件有很多,如汽车发动机、三电系统、各类控制器等[1]。本系统用于一种增程式商用车热管理系统,通过对驱动电机、发电机及相关控制器的余热进行回收[2],实现高效率冬天的电池保温和驾驶舱采暖需求[3]。同时,因为采用较多串联并联的芯体,散热环境也得到了一定的提升。  相似文献   

4.
能量管理系统的优化在整车开发过程中作为一个重要环节,对提升汽车性能至关重要。文章介绍了整车能量管理在整车厂的现状、从技术水平优化整车的能量管理系统来来监控网络中各控制器的睡眠状态以及预唤醒状态,便于能量的合理分配,节省了部分控制器的唤醒时间。基于CAN总线网络管理技术实现能量管理优化的功能,提高了信息传输的速率,具有可靠性、实时性和灵活性。基于CL30s优化能量管理系统,通过监测CAN总线上所有控制器的网络管理报文,整车是否满足进入睡眠、唤醒条件。提供了一种优化能量分配的系统方法。  相似文献   

5.
基于某燃料电池乘用车的热管理系统模型,计算了该乘用车在匀速、加速、爬坡和不同环境温度下的整车热管理系统的工作特性。可以看出:燃料电池工作温度低、热负荷大,热管理系统无法在全工况满足燃料电池系统散热的需求。在现有的热管理技术条件下,可通过提高燃料电池的工作温度、增加迎风空气流量等方法来增加整车热管理系统的散热量。  相似文献   

6.
按照V字型开发流程,对热泵型整车热管理系统开发涉及到的功能性能定义和分解、系统设计和匹配、仿真、控制系统开发、标定和试验验证等各项关键开发技术进行了深入研究,为纯电动汽车热泵型整车热管理系统的集成开发打下了良好的基础。  相似文献   

7.
正北汽E150EV电动汽车动力系统主要由整车控制器(VCU)、电机及电机管理系统、电池及电池管理系统3部分组成。整车控制器(图1)主要用于判断操纵者意愿,并根据车辆行驶状态、电池和电机系统的状态合理分配动力,使车辆运行在最佳状态。VCU一方面通过自身数据采集模块获取驾驶员需求信息,另一方面与电机控制器、电池管理系统、电动辅助系统等部件组成CAN总线网络,可以实时获取当前整车状态,电机、电池、电动辅助等部件的参  相似文献   

8.
混动重卡上冷却系统更为复杂,共有三套冷却系统,发动机冷却系统,电机冷却系统,电池冷却系统,各自控制温度不同。统一由整车控制器VCU控制,三套冷却系统温度控制逻辑都在VCU中提前定义,在整车设计时要分别设计计算各系统的冷却能力进行最终整车温度控制。电池热管理系统(Battery Temperature Management System,BTMS)后续还要进行智能化,全天候的开发,已经成为汽车总成设计中的一个重要组成部分。  相似文献   

9.
贺志超 《时代汽车》2023,(8):135-137+192
本文主要介绍了纯电动矿用卡车电气系统的设计,车辆电气系统主要包括动力电池系统及管理系统、高压配电系统、仪表显示系统、主驱动和辅助驱动系统的设计及整车控制系统的设计,各控制系统之间通过CAN总线进行通讯,整车控制器VCU实时采集车辆各种数据信息,协调各系统控制,实现车辆高压上下电,驾驶员意图判断、动力输出控制、下坡定速巡航功能、辅助驱动系统控制、车辆热管理系统控制、车辆故障分级判断及处理等功能,保证车辆起步平稳、换挡平顺并兼顾车辆动力性能。  相似文献   

10.
从整车控制器、直流转换器、永磁无刷直流牵引电机控制器、国轩电池系统、高压电气系统和充电系统等方面,简述江淮同悦纯电动轿车电动管理系统。  相似文献   

11.
本文中为微型纯电动汽车选定了轮毂电机驱动方式,并研究其构型和参数设计.首先构建了由整车控制器、电机控制器和电池管理系统组成的分布式控制系统以及能量回馈制动与液压制动协调配合的并联复合制动系统.然后进行关键部件的参数设计,先确定整车目标性能参数,再根据车辆动力学计算与Matlab/Simulink仿真结果,确定轮毂电机和动力电池的性能参数并进行选型.最后通过仿真与整车试验验证整车性能满足设计指标.  相似文献   

12.
本文根据混合动力汽车整车特性及动力电池工作特性,提出一种创新有效的动力电池热管理系统解决方案。该方案将发动机热管理系统、驾驶室空调系统和电池热管理系统进行了集成化设计,利用发动机余热对动力电池进行加热,同时采用同一套空调系统对驾驶室和电池进行制冷。然后,根据动力电池所需制冷功率以及加热功率,对动力电池热管理系统进行设计计算及零部件匹配选型。最后开展实车测试验证,证明了动力电池热管理系统设计方案满足要求,本文提出的动力电池热管理系统解决方案可靠有效。  相似文献   

13.
文章阐述了在电动汽车中动力热管理系统的重要性,列出了目前电动汽车动力热管理系统存在的问题,介绍了一种新型电动汽车动力热管理系统的设计方案,并进行了整车安装与调试,适用于电动汽车三种回路的切换。  相似文献   

14.
发动机热管理系统试验和仿真研究   总被引:6,自引:0,他引:6  
模拟发动机在整车中的安装使用条件,如水箱、风扇、发动机在机舱中的布置、附件及管路连接等,搭建发动机热管理系统试验台架。根据热管理仿真分析软件KULI建模的参数输入要求,设计台架试验工况。通过仿真和试验的数据对比验证了模型的准确性,并利用NEDC驾驶循环模拟整车冷却系统性能以指导热管理系统零部件的选型与匹配。  相似文献   

15.
介绍了一套完整的主动进气格栅整车热管理控制策略平台架构和开发流程,基于多款纯电动汽车试验验证,充分利用大数据研究、理论分析、高低温环境舱试验匹配等手段,完成了对主动进气格栅整车热管理控制策略的正向开发,并结合纯电动车型热泵空调系统完成了整车能耗贡献量对比试验分析。研究表明,新开发的主动进气格栅整车热管理策略在常温、低温环境下均有较好的节能收益,高温环境下可及时响应整车热管理系统的散热需求,同时具备平台化应用的可行性。  相似文献   

16.
整车控制器是纯电动汽车的核心部件之一,是整车的控制中心.为了更加深入研究纯电动汽车整车控制策略,文章介绍了纯电动汽车整车控制系统基本组成结构,并对整车控制器策略进行了详细的分析,阐述了整车控制器应用的开发流程.该整车控制器及其控制策略的设计和研发方法,对整车系统的开发具有较强的指导意义.  相似文献   

17.
优化车辆发动机热管理的结构形式与控制模式是提高车辆节油性能的重要途径,本文在公交客车平台基础上,比较了基于电动风扇冷却的新型发动机热管理系统与由皮带直驱的风扇冷却系统,阐述基于电动风扇冷却的发动机热管理系统对整车节油性能的贡献。  相似文献   

18.
冷却液作为新能源纯电动汽车电驱热管理系统、空调制热系统、电池热管理系统的能量传递介质,在整车热管理系统中起到了非常重要的作用。本文介绍了冷却液在新能源纯电动汽车中的应用与工作原理,阐述了冷却液的关键性能指标及选型原则,并对冷却液在新能源纯电动汽车上的发展与应用进行了展望。  相似文献   

19.
电动汽车热管理已成为保障车辆宽温域环境适应能力、电池热安全和乘员舱热舒适性等方面的关键技术,同时也对电动汽车的能耗,特别是高低温环境下的整车能耗有着显著影响。随着车辆电气化和智能化的快速发展,与传统汽车相比,电动汽车热管理技术和发展路线在动力系统、空调系统等子热力系统和整车层面都呈现出了明显的差异和巨大的进步。综述了国内外电动汽车热管理技术领域重要的研究进展,阐述了电池、电机、热泵空调等子系统和整车集成热管理系统的技术进步,总结了当前电动汽车热管理亟待突破的技术重点和未来发展趋势。  相似文献   

20.
为了满足电动汽车电池包和电池热管理系统开发和试验需求,设计和搭建了基于CAN总线通讯交互的电池热管理系统试验台架。通过高温US06工况和低温NEDC工况电池热管理试验研究表明,该试验台架功能运行正常,电池包设计符合热管理要求。并初步验证了电池热管理基本控制策略的正确性,为后续整车级电池热管理标定试验和策略优化提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号