首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carsharing programs that operate as short-term vehicle rentals (often for one-way trips before ending the rental) like Car2Go and ZipCar have quickly expanded, with the number of US users doubling every 1–2 years over the past decade. Such programs seek to shift personal transportation choices from an owned asset to a service used on demand. The advent of autonomous or fully self-driving vehicles will address many current carsharing barriers, including users’ travel to access available vehicles.This work describes the design of an agent-based model for shared autonomous vehicle (SAV) operations, the results of many case-study applications using this model, and the estimated environmental benefits of such settings, versus conventional vehicle ownership and use. The model operates by generating trips throughout a grid-based urban area, with each trip assigned an origin, destination and departure time, to mimic realistic travel profiles. A preliminary model run estimates the SAV fleet size required to reasonably service all trips, also using a variety of vehicle relocation strategies that seek to minimize future traveler wait times. Next, the model is run over one-hundred days, with driverless vehicles ferrying travelers from one destination to the next. During each 5-min interval, some unused SAVs relocate, attempting to shorten wait times for next-period travelers.Case studies vary trip generation rates, trip distribution patterns, network congestion levels, service area size, vehicle relocation strategies, and fleet size. Preliminary results indicate that each SAV can replace around eleven conventional vehicles, but adds up to 10% more travel distance than comparable non-SAV trips, resulting in overall beneficial emissions impacts, once fleet-efficiency changes and embodied versus in-use emissions are assessed.  相似文献   

2.
In this paper, a forward power-train plug-in hybrid electric vehicle model with an energy management system and a cycle optimization algorithm is evaluated for energy efficiency. Using wirelessly communicated predictive traffic data for vehicles in a roadway network, as envisioned in intelligent transportation systems, traffic prediction cycles are optimized using a cycle optimization strategy. This resulted in a 56-86% fuel efficiency improvements for conventional vehicles. When combined with the plug-in hybrid electric vehicle power management system, about 115% energy efficiency improvements were achieved. Further improvements in the overall energy efficiency of the network were achieved with increased penetration rates of the intelligent transportation assisted enabled plug-in hybrid electric vehicles.  相似文献   

3.
Recently, electric vehicles are gaining importance which helps to reduce dependency on oil, increases energy efficiency of transportation, reduces carbon emissions and noise, and avoids tail pipe emissions. Because of short daily driving distances, high mileage, and intermediate waiting time, fossil-fuelled taxi vehicles are ideal candidates for being replaced by battery electric vehicles (BEVs). Moreover, taxi BEVs would increase visibility of electric mobility and therefore encourage others to purchase an electric vehicle. Prior to replacing conventional taxis with BEVs, a suitable charging infrastructure has to be established. This infrastructure consists of a sufficiently dense network of charging stations taking into account the lower driving ranges of BEVs.In this case study we propose a decision support system for placing charging stations in order to satisfy the charging demand of electric taxi vehicles. Operational taxi data from about 800 vehicles is used to identify and estimate the charging demand for electric taxis based on frequent origins and destinations of trips. Next, a variant of the maximal covering location problem is formulated and solved to satisfy as much charging demand as possible with a limited number of charging stations. Already existing fast charging locations are considered in the optimization problem. In this work, we focus on finding regions in which charging stations should be placed rather than exact locations. The exact location within an area is identified in a post-optimization phase (e.g., by authorities), where environmental conditions are considered, e.g., the capacity of the power network, availability of space, and legal issues.Our approach is implemented in the city of Vienna, Austria, in the course of an applied research project that has been conducted in 2014. Local authorities, power network operators, representatives of taxi driver guilds as well as a radio taxi provider participated in the project and identified exact locations for charging stations based on our decision support system.  相似文献   

4.
The paper concerns the conceptual design of a transport system for pedestrian areas. The proposed transport system is based on a fleet of eco-sustainable Personal Intelligent City Accessible Vehicles (PICAVs). The vehicles are shared through the day by different users and the following specific services will be provided: instant access, open ended reservation and one way trips. Referring to the proposed transport system, a new methodology to optimise the fleet dimension and its distribution among the stations is proposed in this paper. The problem faced is an optimisation problem where the cost function to be minimised takes into account both the transport system cost and the user costs that depend on the waiting times. A random search algorithm has been adopted. Given a fleet dimension and its distribution among the stations, the waiting times of the users are assessed by a microscopic simulation. The simulation model tracks the second-by-second activity of each PICAV user, as well as the second-by-second activity of each vehicle. The overall methodology has been implemented in an object-oriented simulator. The proposed transport system has been planned and simulated for the historical city centre of Genoa, Italy.  相似文献   

5.
This paper presents results from a plug-in hybrid vehicle drive share program involving retrofitted hybrid electric vehicles. A potential for high fuel efficiency is indicated, however, the average fuel efficiency was only marginally better than conventional hybrid vehicles. This is due to the majority of vehicle miles traveled occurring on trips outside the “all electric” range and very short trips where fuel consumption is dominated by emissions control strategies. The work also considers the availability of the battery for vehicle to grid services and finds that there are a large number of trips in the afternoon period, typically when electrical demand is at a peak. Vehicle charging activity also tended towards daytime activity, contrary to the oft-assumed off-peak charging pattern.  相似文献   

6.
This paper introduces a relocation model for free-floating Carsharing (FFCS) systems with conventional and electric vehicles (EVs). In case of imbalances caused by one-way trips, the approach recommends profit maximizing vehicle relocations. Unlike existing approaches, two types of relocations are distinguished: inter zone relocations moving vehicles between defined macroscopic zones of the operating area and intra zone relocations moving vehicles within such zones. Relocations are combined with the unplugging and recharging of EVs and the refueling of conventional vehicles. In addition, remaining pure service trips are suggested. A historical data analysis and zone categorization module enables the calculation of target vehicle distributions. Unlike existing approaches, macroscopic optimization steps are supplemented by microscopic rule-based steps. This enables relocation recommendations on the individual vehicle level with the exact GPS coordinates of the relocation end positions. The approach is practice-ready with low computational times even for large-scale scenarios.To assess the impact of relocations on the system’s operation, the model is applied to a FFCS system in Munich, Germany within three real world field tests. Test three shows the highest degree of automation and represents the final version of the model. Its evaluation shows very promising results. Most importantly, the profit is increased by 5.8% and the sales per vehicle by up to 10%. The mean idle time per trip end is decreased by 4%.  相似文献   

7.
The growth of vehicle sales and use internationally requires the consumption of significant quantities of energy and materials, and contributes to the deterioration of air-quality and climate conditions. Advanced propulsion systems and electric drive vehicles have substantially different characteristics and impacts. They require life cycle assessments and detailed comparisons with gasoline powered vehicles which, in turn, should lead to critical updates of traditional models and assumptions. For a comprehensive comparison of advanced and traditional light duty vehicles, a model is developed that integrates external costs, including emissions and time losses, with societal and consumer life cycle costs. Life cycle emissions and time losses are converted into costs for seven urban light duty vehicles. The results, which are based on vehicle technology characteristics and transportation impacts on environment, facilitate vehicle comparisons and support policy making in transportation. Substantially, more sustainable urban transportation can be achieved in the short-term by promoting policies that increase vehicle occupancy; in the intermediate-term by increasing the share of hybrid vehicles in the car market and in the long-term by the widespread use of electric vehicles. A sensitivity-analysis of life cost results revealed that vehicle costs change significantly for different geographical areas depending on vehicle taxation, pricing of gasoline, electric power and pollution. Current practices in carbon and air quality pricing favor oil and coal based technologies. However, increasing the cost of electricity from coal and other fossil fuels would increase the variable cost for electric vehicles, and tend to favor the variable cost of hybrid vehicles.  相似文献   

8.
The transportation sector is undergoing three revolutions: shared mobility, autonomous driving, and electrification. When planning the charging infrastructure for electric vehicles, it is critical to consider the potential interactions and synergies among these three emerging systems. This study proposes a framework to optimize charging infrastructure development for increasing electric vehicle (EV) adoption in systems with different levels of autonomous vehicle adoption and ride sharing participation. The proposed model also accounts for the pre-existing charging infrastructure, vehicle queuing at the charging stations, and the trade-offs between building new charging stations and expanding existing ones with more charging ports.Using New York City (NYC) taxis as a case study, we evaluated the optimum charging station configurations for three EV adoption pathways. The pathways include EV adoption in a 1) traditional fleet (non-autonomous vehicles without ride sharing), 2) future fleet (fully autonomous vehicles with ride sharing), and 3) switch-over from traditional to future fleet. Our results show that, EV adoption in a traditional fleet requires charging infrastructure with fewer stations that each has more charging ports, compared to the future fleet which benefits from having more scattered charging stations. Charging will only reduce the service level by 2% for a future fleet with 100% EV adoption. EV adoption can reduce CO2 emissions of NYC taxis by up to 861 Tones/day for the future fleet and 1100 Tones/day for the traditional fleet.  相似文献   

9.
Greater adoption and use of alternative fuel vehicles (AFVs) can be environmentally beneficial and reduce dependence on gasoline. The use of AFVs vis-à-vis conventional gasoline vehicles is not well understood, especially when it comes to travel choices and short-term driving decisions. Using data that contains a sufficiently large number of early AFV adopters (who have overcome obstacles to adoption), this study explores differences in use of AFVs and conventional gasoline vehicles (and hybrid vehicles). The study analyzes large-scale behavioral data integrated with sensor data from global positioning system devices, representing advances in large-scale data analytics. Specifically, it makes sense of data containing 54,043,889 s of speed observations, and 65,652 trips made by 2908 drivers in 5 regions of California. The study answers important research questions about AFV use patterns (e.g., trip frequency and daily vehicle miles traveled) and driving practices. Driving volatility, as one measure of driving practice, is used as a key metric in this study to capture acceleration, and vehicular jerk decisions that exceed certain thresholds during a trip. The results show that AFVs cannot be viewed as monolithic; there are important differences within AFV use, i.e., between plug-in hybrids, battery electric, or compressed natural gas vehicles. Multi-level models are particularly appropriate for analysis, given that the data are nested, i.e., multiple trips are made by different drivers who reside in various regions. Using such models, the study also found that driving volatility varies significantly between trips, driver groups, and regions in California. Some alternative fuel vehicles are associated with calmer driving compared with conventional vehicles. The implications of the results for safety, informed consumer choices and large-scale data analytics are discussed.  相似文献   

10.
With the increasing fuel prices and the pressure towards greener modes of transportation, ridesharing has emerged as an alternative to private car ownership and public transportation. In this paper, we focus on a common destination ridesharing system which is of interest in large organizations such as companies and government offices. Particularly, such organizations are looking at using company owned vehicles to offer a ridesharing service by which employees carpool to work thus leading to several benefits that include decreasing pressure on on-campus parking spaces, lowering localized on-campus congestion, in addition to offering a greener transportation mode while lowering transportation costs for employees. Based on discussions with our industry partners, optimizing the distribution of limited number of company vehicles while insuring robustness against unlikely vehicle unavailability is of critical importance. Thus in this paper, we present a stochastic mixed integer programming model to optimize the allocation of shared vehicles to employees while taking into account the unforeseen event of vehicle unavailability which would require some participants to take own vehicles or rerouting of existing vehicles. Since solving the proposed model to optimality is computationally challenging for problems of large sizes, we also propose a heuristic that is capable of finding good quality solutions in limited computational time. The proposed model and heuristic are tested on several instances of varying sizes showing the computational performance. Finally, a test case based on the city of Rome, Italy is presented and insights related to vehicle distribution and travel time savings are discussed.  相似文献   

11.
Shared autonomous vehicles, or SAVs, have attracted significant public and private interest because of their opportunity to simplify vehicle access, avoid parking costs, reduce fleet size, and, ultimately, save many travelers time and money. One way to extend these benefits is through an electric vehicle (EV) fleet. EVs are especially suited for this heavy usage due to their lower energy costs and reduced maintenance needs. As the price of EV batteries continues to fall, charging facilities become more convenient, and renewable energy sources grow in market share, EVs will become more economically and environmentally competitive with conventionally fueled vehicles. EVs are limited by their distance range and charge times, so these are important factors when considering operations of a large, electric SAV (SAEV) fleet.This study simulated performance characteristics of SAEV fleets serving travelers across the Austin, Texas 6-county region. The simulation works in sync with the agent-based simulator MATSim, with SAEV modeling as a new mode. Charging stations are placed, as needed, to serve all trips requested (under 75 km or 47 miles in length) over 30 days of initial model runs. Simulation of distinctive fleet sizes requiring different charge times and exhibiting different ranges, suggests that the number of station locations depends almost wholly on vehicle range. Reducing charge times does lower fleet response times (to trip requests), but increasing fleet size improves response times the most. Increasing range above 175 km (109 miles) does not appear to improve response times for this region and trips originating in the urban core are served the quickest. Unoccupied travel accounted for 19.6% of SAEV mileage on average, with driving to charging stations accounting for 31.5% of this empty-vehicle mileage. This study found that there appears to be a limit on how much response time can be improved through decreasing charge times or increasing vehicle range.  相似文献   

12.
The emergence of electric unmanned aerial vehicle (E-UAV) technologies, albeit somewhat futuristic, is anticipated to pose similar challenges to the system operation as those of electric vehicles (EVs). Notably, the charging of EVs en-route at charging stations has been recognized as a significant type of flexible load for power systems, which often imposes non-negligible impacts on the power system operator’s decisions on electricity prices. Meanwhile, the charging cost based on charging time and price is part of the trip cost for the users, which can affect the spatio-temporal assignment of E-UAV traffic to charging stations. This paper aims at investigating joint operations of coupled power and electric aviation transportation systems that are associated with en-route charging of E-UAVs in a centrally controlled and yet dynamic setting, i.e., with time-varying travel demand and power system base load. Dynamic E-UAV charging assignment is used as a tool to smooth the power system load. A joint pricing scheme is proposed and a cost minimization problem is formulated to achieve system optimality for such coupled systems. Numerical experiments are performed to test the proposed pricing scheme and demonstrate the benefits of the framework for joint operations.  相似文献   

13.
Variable speed limit systems where variable message signs are used to show speed limits adjusted to the prevailing road or traffic conditions are installed on motorways in many countries. The objectives of variable speed limit system installations are often to decrease the number of accidents and to increase traffic efficiency. Currently, there is an interest in exploring the potential of cooperative intelligent transport systems including communication between vehicles and/or vehicles and the infrastructure. In this paper, we study the potential benefits of introducing infrastructure to vehicle communication, autonomous vehicle control and individualized speed limits in variable speed limit systems. We do this by proposing a cooperative variable speed limit system as an extension of an existing variable speed limit system. In the proposed system, communication between the infrastructure and the vehicles is used to transmit variable speed limits to upstream vehicles before the variable message signs become visible to the drivers. The system is evaluated by the means of microscopic traffic simulation. Traffic efficiency and environmental effects are considered in the analysis. The results of the study show benefits of the infrastructure to vehicle communication, autonomous vehicle control and individualized speed limits for variable speed limit systems in the form of lower acceleration rates and thereby harmonized traffic flow and reduced exhaust emissions.  相似文献   

14.
When operated at low speeds, electric and hybrid vehicles have created pedestrian safety concerns in congested areas of various city centers, because these vehicles have relatively silent engines compared to those of internal combustion engine vehicles, resulting in safety issues for pedestrians and cyclists due to the lack of engine noise to warn them of an oncoming electric or hybrid vehicle. However, the driver behavior characteristics have also been considered in many studies, and the high end-prices of electric vehicles indicate that electric vehicle drivers tend to have a higher prosperity index and are more likely to receive a better education, making them more alert while driving and more likely to obey traffic rules. In this paper, the positive and negative factors associated with electric vehicle adoption and the subsequent effects on pedestrian traffic safety are investigated using an agent-based modeling approach, in which a traffic micro-simulation of a real intersection is simulated in 3D using AnyLogic software. First, the interacting agents and dynamic parameters are defined in the agent-based model. Next, a 3D intersection environment is created to integrate the agent-based model into a visual simulation, where the simulation records the number of near-crashes occurring in certain pedestrian crossings throughout the virtual time duration of a year. A sensitivity analysis is also carried out with 9000 subsequent simulations performed in a supercomputer to account for the variation in dynamic parameters (ambient sound level, vehicle sound level, and ambient illumination). According to the analysis, electric vehicles have a 30% higher pedestrian traffic safety risk than internal combustion engine vehicles under high ambient sound levels. At low ambient sound levels, however, electric vehicles have only a 10% higher safety risk for pedestrians. Low levels of ambient illumination also increase the number of pedestrians involved in near-crashes for both electric vehicles and combustion engine vehicles.  相似文献   

15.
Ride-hailing is a clear initial market for autonomous electric vehicles (AEVs) because it features high vehicle utilization levels and strong incentive to cut down labor costs. An extensive and reliable network of recharging infrastructure is the prerequisite to launch a lucrative AEV ride-hailing fleet. Hence, it is necessary to estimate the charging infrastructure demands for an AEV fleet in advance. This study proposes a charging system planning framework for a shared-use AEV fleet providing ride-hailing services in urban area. We first adopt an agent-based simulation model, called BEAM, to describe the complex behaviors of both passengers and transportation systems in urban cities. BEAM simulates the driving, parking and charging behaviors of the AEV fleet with range constraints and identifies times and locations of their charging demands. Then, based on BEAM simulation outputs, we adopt a hybrid algorithm to site and size charging stations to satisfy the charging demands subject to quality of service requirements. Based on the proposed framework, we estimate the charging infrastructure demands and calculate the corresponding economics and carbon emission impacts of electrifying a ride-hailing AEV fleet in the San Francisco Bay Area. We also investigate the impacts of various AEV and charging system parameters, e.g., fleet size, vehicle battery capacity and rated power of chargers, on the ride-hailing system’s overall costs.  相似文献   

16.
The paper develops a simulation–optimization model that determines where to locate electric vehicle chargers to maximize their use by privately owned electric vehicles. Applying this model to the central-Ohio region, we demonstrate that a combination of level-one and -two chargers is preferable to level-two chargers only. We further explore interactions between the optimization criterion used and the budget available. We finally show that although the optimal location is sensitive to the specific optimization criterion considered, overall service levels are less sensitive to the optimization strategy.  相似文献   

17.
This paper presents a micro‐simulation modeling framework for evaluating pedestrian–vehicle conflicts in crowded crossing areas. The framework adopts a simulation approach that models vehicles and pedestrians at the microscopic level while satisfying two sets of constraints: (1) flow constraints and (2) non‐collision constraints. Pedestrians move across two‐directional cells as opposed to one‐dimensional lanes as in the case of vehicles; therefore, extra caution is considered when modeling the shared space between vehicles and pedestrians. The framework is used to assess large‐scale pedestrian–vehicle conflicts in a highly congested ring road in the City of Madinah that carries 20 000 vehicles/hour and crossed by 140 000 pedestrians/hour after a major congregational prayer. The quantitative and visual results of the simulation exhibits serious conflicts between pedestrians and vehicles, resulting in considerable delays for pedestrians crossing the road (9 minutes average delay) and slow traffic conditions (average speed <10 km/hour). The model is then used to evaluate the following three mitigating strategies: (1) pedestrian‐only phase; (2) grade separation; and (3) pedestrian mall. A matrix of operational measures of effectiveness for network‐wide performance (e.g., average travel time, average speed) and for pedestrian‐specific performance (e.g., mean speed, mean density, mean delay, mean moving time) is used to assess the effectiveness of the proposed strategies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents an analysis of vehicle regenerative braking systems as a quick and relatively easy means of achieving higher overall fuel efficiency and lowering carbon emissions. The system involves the installation of an additional electric motor/generator in parallel to the vehicle’s internal combustion engine and is used in conjunction with a DCDC converter and ultracapacitor. The system is used to recapture the energy lost in vehicle braking, significantly reducing a vehicle’s overall energy consumption and lowering vehicle emissions. Experimentally-based evidence is collected and compared for two sample vehicles to deduce the potential fuel and emissions saving.  相似文献   

19.
Fuel-speed curves (FSC) are used to account for the aggregate effects of congestion on fuel consumption in transportation scenario analysis. This paper presents plausible FSC for conventional internal combustion engine (ICE) vehicles and for advanced vehicles such as hybrid electric vehicles, fully electric vehicles (EVs), and fuel cell vehicles (FCVs) using a fuel consumption model with transient driving schedules and a set of 145 hypothetical vehicles. The FSC shapes show that advanced power train vehicles are expected to maintain fuel economy (FE) in congestion better than ICE vehicles, and FE can even improve for EV and FCV in freeway congestion. In order to implement these FSC for long-range scenario modeling, a bounded approach is presented which uses a single congestion sensitivity parameter. The results in this paper will assist analysis of the roles that vehicle technology and congestion mitigation can play in reducing fuel consumption and greenhouse gas emissions from motor vehicles.  相似文献   

20.
In suburban areas, combining the use of electric vehicles (EV) and transit systems in an EV Park-Charge-Ride (PCR) approach can potentially help improve transit accessibility, facilitate EV charging and adoption, and reduce the need for long-distance driving and ensuing impacts. Despite the anticipated growth of EV adoption and charging demand, PCR programs are limited. With a focus on multi-modal trips, this study proposes a generic planning process that integrates EV infrastructure development with transit systems, develops a systematic assessment approach to fostering the PCR adoption, and illustrates a case implementation in Chicago. Specifically, this study develops a Suitability Index (SI) for EV charging locations at parking spots that are suitable for both EV charging and transit connections. SI can be customized for short-term and long-term planning scenarios. SI values are derived in Chicago as an example for (1) commuter rail stations (for work trips), and (2) shopping centers near transit stops as potential opportunities for additional weekday parking and EV charging (for multi-purpose trips/MPT). Furthermore, carbon emissions and vehicle miles travelled (VMT) across various travel modes and trip scenarios (i.e., work trips and MPT) are calculated. Compared to the baseline of driving a conventional vehicle, this study found that an EV PCR commuter can reduce up to 87% of personal VMT and 52% of carbon emissions. A more active role of the public sector in the PCR program development is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号