首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication are emerging components of intelligent transport systems (ITS) based on which vehicles can drive in a cooperative way and, hence, significantly improve traffic flow efficiency. However, due to the high vehicle mobility, the unreliable vehicular communications such as packet loss and transmission delay can impair the performance of the cooperative driving system (CDS). In addition, the downstream traffic information collected by roadside sensors in the V2I communication may introduce measurement errors, which also affect the performance of the CDS. The goal of this paper is to bridge the gap between traffic flow modelling and communication approaches in order to build up better cooperative traffic systems. To this end, we aim to develop an enhanced cooperative microscopic (car-following) traffic model considering V2V and V2I communication (or V2X for short), and investigate how vehicular communications affect the vehicle cooperative driving, especially in traffic disturbance scenarios. For these purposes, we design a novel consensus-based vehicle control algorithm for the CDS, in which not only the local traffic flow stability is guaranteed, but also the shock waves are supposed to be smoothed. The IEEE 802.11p, the defacto vehicular networking standard, is selected as the communication protocols, and the roadside sensors are deployed to collect the average speed in the targeted area as the downstream traffic reference. Specifically, the imperfections of vehicular communication as well as the measured information noise are taken into account. Numerical results show the efficiency of the proposed scheme. This paper attempts to theoretically investigate the relationship between vehicular communications and cooperative driving, which is needed for the future deployment of both connected vehicles and infrastructure (i.e. V2X).  相似文献   

2.
Various green driving strategies have been proposed to smooth traffic flow and lower pollutant emissions and fuel consumption in stop-and-go traffic. In this paper, we present a control theoretic formulation of distributed, cooperative green driving strategies based on inter-vehicle communications (IVCs). The control variable is the advisory speed limit, which is designed to smooth a following vehicle’s speed profile without changing its average speed. We theoretically analyze the performance of a constant independent and three simple cooperative green driving strategies and present three rules for effective and robust strategies. We then develop a distributed cooperative green driving strategy, in which the advisory speed limit is first independently calculated by each individual vehicle and then averaged among green driving vehicles through IVC. By simulations with Newell’s car-following model and the Comprehensive Modal Emissions Model (CMEM), we demonstrate that such a strategy is effective and robust independently as well as cooperatively for different market penetration rates of IVC-equipped vehicles and communication delays. In particular, even when 5% of the vehicles implement the green driving strategy and the IVC communication delay is 60 s, the fuel consumption can be reduced by up to 15%. Finally we discuss some future extensions.  相似文献   

3.
Traffic congestion and energy issues have set a high bar for current ground transportation systems. With advances in vehicular communication technologies, collaborations of connected vehicles have becoming a fundamental block to build automated highway transportation systems of high efficiency. This paper presents a distributed optimal control scheme that takes into account macroscopic traffic management and microscopic vehicle dynamics to achieve efficiently cooperative highway driving. Critical traffic information beyond the scope of human perception is obtained from connected vehicles downstream to establish necessary traffic management mitigating congestion. With backpropagating traffic management advice, a connected vehicle having an adjustment intention exchanges control-oriented information with immediately connected neighbors to establish potential cooperation consensus, and to generate cooperative control actions. To achieve this goal, a distributed model predictive control (DMPC) scheme is developed accounting for driving safety and efficiency. By coupling the states of collaborators in the optimization index, connected vehicles achieve fundamental highway maneuvers cooperatively and optimally. The performance of the distributed control scheme and the energy-saving potential of conducting such cooperation are tested in a mixed highway traffic environment by the means of microscopic simulations.  相似文献   

4.
Vehicle longitudinal control systems such as (commercially available) autonomous Adaptive Cruise Control (ACC) and its more sophisticated variant Cooperative ACC (CACC) could potentially have significant impacts on traffic flow. Accurate models of the dynamic responses of both of these systems are needed to produce realistic predictions of their effects on highway capacity and traffic flow dynamics. This paper describes the development of models of both ACC and CACC control systems that are based on real experimental data. To this end, four production vehicles were equipped with a commercial ACC system and a newly developed CACC controller. The Intelligent Driver Model (IDM) that has been widely used for ACC car-following modeling was also implemented on the production vehicles. These controllers were tested in different traffic situations in order to measure the actual responses of the vehicles. Test results indicate that: (1) the IDM controller when implemented in our experimental test vehicles does not perceptibly follow the speed changes of the preceding vehicle; (2) strings of consecutive ACC vehicles are unstable, amplifying the speed variations of preceding vehicles; and (3) strings of consecutive CACC vehicles overcome these limitations, providing smooth and stable car following responses. Simple but accurate models of the ACC and CACC vehicle following dynamics were derived from the actual measured responses of the vehicles and applied to simulations of some simple multi-vehicle car following scenarios.  相似文献   

5.
A widespread deployment of vehicle automation and communication systems (VACS) is expected in the next years. This may lead to improvements in traffic management efficiency because of the novel possibilities of using VACS both as sensors and as actuators, as well as of a variety of new communications channels (vehicle-to-vehicles, vehicle-to-infrastructure) and related opportunities. To achieve this traffic flow efficiency, appropriate studies, developing potential control strategies to exploit the VACS availability, are essential. This paper describes a hierarchical model predictive control framework that can be used for the coordinated and integrated control of a motorway system, considering that an amount of vehicles are equipped with specific VACS. The concept employs and exploits the synergistic (integrated) action of a number of old and new control measures, including ramp metering, vehicle speed control, and lane changing control at a macroscopic level. The effectiveness and the computational feasibility of the proposed approach are demonstrated via microscopic simulation for a variety of penetration rates of equipped vehicles.  相似文献   

6.
The introduction of connected and autonomous vehicles will bring changes to the highway driving environment. Connected vehicle technology provides real-time information about the surrounding traffic condition and the traffic management center’s decisions. Such information is expected to improve drivers’ efficiency, response, and comfort while enhancing safety and mobility. Connected vehicle technology can also further increase efficiency and reliability of autonomous vehicles, though these vehicles could be operated solely with their on-board sensors, without communication. While several studies have examined the possible effects of connected and autonomous vehicles on the driving environment, most of the modeling approaches in the literature do not distinguish between connectivity and automation, leaving many questions unanswered regarding the implications of different contemplated deployment scenarios. There is need for a comprehensive acceleration framework that distinguishes between these two technologies while modeling the new connected environment. This study presents a framework that utilizes different models with technology-appropriate assumptions to simulate different vehicle types with distinct communication capabilities. The stability analysis of the resulting traffic stream behavior using this framework is presented for different market penetration rates of connected and autonomous vehicles. The analysis reveals that connected and autonomous vehicles can improve string stability. Moreover, automation is found to be more effective in preventing shockwave formation and propagation under the model’s assumptions. In addition to stability, the effects of these technologies on throughput are explored, suggesting substantial potential throughput increases under certain penetration scenarios.  相似文献   

7.
Connected and automated vehicle technologies hold great promises for improving the safety, efficiency, and environmental impacts of the transportation sector. In this study we are concerned with multihop connectivity of instantaneous vehicular one-dimensional ad hoc networks (VANETs) formed by connected vehicles along a communication path in a road network with given either vehicle locations or traffic densities, market penetration rates, and transmission ranges. We first define a new random variable for the location of the end node of a communication chain, which is a discrete random variable with given vehicle locations and a mixed random variable with given traffic densities. Then recursive, iterative, or differential equation models of instantaneous multihop connectivity between two communication nodes are derived from the relationships between end node probability mass or density function and connectivity. Assuming a simple communication model, the new models are applicable for general distribution patterns of vehicles and communication nodes, including non-evenly placed vehicles and nonhomogeneous Poisson distributions of nodes. With given vehicle locations, the computational cost for this new model is linear to the number of vehicles; with given traffic densities, we derive a new closed-form connectivity model for homogeneous Poisson distributions of communication nodes and an approximate closed-form model when distribution patterns of communication nodes are given by spatial renewal processes. We then apply the models to evaluate impacts on connectivity of traffic patterns, including shock waves, and road-side stations. The connectivity model could be helpful for designing routing protocols in VANETs and developing their applications in transportation systems.  相似文献   

8.
We investigate four communication schemes for Cooperative Active Safety System (CASS) and compare their performance with application level reliability metrics. The four schemes are periodic communication, periodic communication with model, variable communication, and variable communication with repetition. CASS uses information communicated from neighboring vehicles via wireless network in order to actively evaluate driving situations and provide warnings or other forms of assistance to drivers. In CASS, we assume that vehicles are equipped with a GPS receiver, a Dedicated Short Range Communications (DSRC) transceiver, and in-vehicle sensors. The messages exchanged between vehicles convey position, speed, heading, and other vehicle kinematics. This information is broadcast to all neighbors within a specified communication range. Existing literature surmises that in order for CASS to be effective, it may need a vehicle to broadcast messages periodically as often as every 100 ms. In this paper, we introduce the concept of running a kinematic model in-between message transmissions as a means of reducing the communication rate. We use traffic and network simulators to compare the performance of the four schemes. Our performance measure metrics include communication losses as well as average position errors.  相似文献   

9.
Advances in Information and Communication Technologies (ICT) allow the transportation community to foresee dramatic improvements for the incoming years in terms of a more efficient, environmental friendly and safe traffic management. In that context, new ITS paradigms like Cooperative Systems (C-ITS) enable an efficient traffic state estimation and traffic control. C-ITS refers to three levels of cooperation between vehicles and infrastructure: (i) equipped vehicles with Advanced Driver Assistance Systems (ADAS) adjusting their motion to surrounding traffic conditions; (ii) information exchange with the infrastructure; (iii) vehicle-to-vehicle communication. Therefore, C-ITS makes it possible to go a step further in providing real time information and tailored control strategies to specific drivers. As a response to an expected increasing penetration rate of these systems, traffic managers and researchers have to come up with new methodologies that override the classic methods of traffic modeling and control. In this paper, we discuss some potentialities of C-ITS for traffic management with the methodological issues following the expansion of such systems. Cooperative traffic models are introduced into an open-source traffic simulator. The resulting simulation framework is robust and able to assess potential benefits of cooperative traffic control strategies in different traffic configurations.  相似文献   

10.
In this paper, a forward power-train plug-in hybrid electric vehicle model with an energy management system and a cycle optimization algorithm is evaluated for energy efficiency. Using wirelessly communicated predictive traffic data for vehicles in a roadway network, as envisioned in intelligent transportation systems, traffic prediction cycles are optimized using a cycle optimization strategy. This resulted in a 56-86% fuel efficiency improvements for conventional vehicles. When combined with the plug-in hybrid electric vehicle power management system, about 115% energy efficiency improvements were achieved. Further improvements in the overall energy efficiency of the network were achieved with increased penetration rates of the intelligent transportation assisted enabled plug-in hybrid electric vehicles.  相似文献   

11.
In view of the serious traffic congestion during peak hours in most metropolitan areas around the world and recent improvement of information technology, there is a growing aspiration to alleviate road congestion by applications of electronic information and communication technology. Providing drivers with dynamic travel time information such as estimated journey times on major routes should help drivers to select better routes and guide them to utilise existing expressway network. This can be regarded as one possible strategy for effective traffic management. This paper aims to investigate the effects and benefits of providing dynamic travel time information to drivers via variable message signs at the expressway network. In order to assess the effects of the dynamic driver information system with making use of the variable message signs, a time-dependent traffic assignment model is proposed. A numerical example is used to illustrate the effects of the dynamic travel time information via variable message signs. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
ABSTRACT

Connected and autonomous vehicle (CAV) technologies are expected to change driving/vehicle behavior on freeways. This study investigates the impact of CAVs on freeway capacity using a microsimulation tool. A four-lane basic freeway segment is selected as the case study through the Caltrans Performance Measurement System (PeMS). To obtain valid results, various driving behavior parameters are calibrated to the real traffic conditions for human-driven vehicles. In particular, the calibration is conducted using genetic algorithm. A revised Intelligent Driver Model (IDM) is developed and used as the car-following model for CAVs. The simulation is conducted on the basic freeway segment under different penetration rates of CAVs and different freeway speed limits. The results show that with an increase in the market penetration rate, freeway capacity increases, and will increase significantly as the speed limit increases.  相似文献   

13.
The paper introduces an optimal control method for traffic management with variable speed limits. It consists of traffic flow dynamics prediction with a non‐linearized Lighthill–Whitham–Richards macroscopic traffic flow model, introduction of a cost functional, which enables stable shockwaves optimization, and numerical implementation of the optimization process with differential evolution. The method overcomes the discretization issues and provides speed limits that are in general not limited to small number of successive discrete points, i.e. variable message signs locations, nor in rounded speed limits. Performance of the method is demonstrated on a case study, which shows promising reduction of the backward moving shockwave that occurs because of a stationary bottleneck. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The state of the practice traffic signal control strategies mainly rely on infrastructure based vehicle detector data as the input for the control logic. The infrastructure based detectors are generally point detectors which cannot directly provide measurement of vehicle location and speed. With the advances in wireless communication technology, vehicles are able to communicate with each other and with the infrastructure in the emerging connected vehicle system. Data collected from connected vehicles provides a much more complete picture of the traffic states near an intersection and can be utilized for signal control. This paper presents a real-time adaptive signal phase allocation algorithm using connected vehicle data. The proposed algorithm optimizes the phase sequence and duration by solving a two-level optimization problem. Two objective functions are considered: minimization of total vehicle delay and minimization of queue length. Due to the low penetration rate of the connected vehicles, an algorithm that estimates the states of unequipped vehicle based on connected vehicle data is developed to construct a complete arrival table for the phase allocation algorithm. A real-world intersection is modeled in VISSIM to validate the algorithms. Results with a variety of connected vehicle market penetration rates and demand levels are compared to well-tuned fully actuated control. In general, the proposed control algorithm outperforms actuated control by reducing total delay by as much as 16.33% in a high penetration rate case and similar delay in a low penetration rate case. Different objective functions result in different behaviors of signal timing. The minimization of total vehicle delay usually generates lower total vehicle delay, while minimization of queue length serves all phases in a more balanced way.  相似文献   

15.
Traffic signals, even though crucial for safe operations of busy intersections, are one of the leading causes of travel delays in urban settings, as well as the reason why billions of gallons of fuel are burned, and tons of toxic pollutants released to the atmosphere each year by idling engines. Recent advances in cellular networks and dedicated short-range communications make Vehicle-to-Infrastructure (V2I) communications a reality, as individual cars and traffic signals can now be equipped with communication and computing devices. In this paper, we first presented an integrated simulator with V2I, a car-following model and an emission model to simulate the behavior of vehicles at signalized intersections and calculate travel delays in queues, vehicle emissions, and fuel consumption. We then present a hierarchical green driving strategy based on feedback control to smooth stop-and-go traffic in signalized networks, where signals can disseminate traffic signal information and loop detector data to connected vehicles through V2I communications. In this strategy, the control variable is an individual advisory speed limit for each equipped vehicle, which is calculated from its location, signal settings, and traffic conditions. Finally, we quantify the mobility and environment improvements of the green driving strategy with respect to market penetration rates of equipped vehicles, traffic conditions, communication characteristics, location accuracy, and the car-following model itself, both in isolated and non-isolated intersections. In particular, we demonstrate savings of around 15% in travel delays and around 8% in fuel consumption and greenhouse gas emissions. Different from many existing ecodriving strategies in signalized road networks, where vehicles’ speed profiles are totally controlled, our strategy is hierarchical, since only the speed limit is provided, and vehicles still have to follow their leaders. Such a strategy is crucial for maintaining safety with mixed vehicles.  相似文献   

16.
Shared autonomous vehicles (SAVs) are the next major evolution in urban mobility. This technology has attracted much interest of car manufacturers aiming at playing a role as transportation network companies (TNCs) and carsharing agencies in order to gain benefits per kilometer and per ride. It is predicted that the majority of future SAVs would most probably be electric. It is therefore important to understand how limited vehicle range and the configuration of charging infrastructure will affect the performance of shared autonomous electric vehicle (SAEV) services. In this study, we aim to explore the impacts of charging station placement, charging types (including normal and rapid charging, and battery swapping), and vehicle battery capacities on service efficiency. We perform an agent-based simulation of SAEVs across the Rouen Normandie metropolitan area in France. The simulation process features impact assessment by considering dynamic demand responsive to the network and traffic.Research results suggest that the performance of SAEVs is strongly correlated with the charging infrastructure. Importantly, faster charging infrastructure and placement of charging locations according to minimized distances between demand hubs and charging stations result in a higher performance. Further analysis indicates the importance of dispersing charging stations across the service area and its impacts on service effectiveness. The results also underline that SAEV battery capacity has to be selected carefully such that to avoid the overlaps between demand and charging peak times. Finally, the simulation results show that the performance indicators of SAEV service are significantly improved by providing battery swapping infrastructure.  相似文献   

17.
Point-to-point (P2P) speed enforcement is a relatively new approach to traffic law enforcement. Its technology allows vehicles whose average speed exceeds the speed limit over the controlled section to be fined. It therefore encourages compliance over distances longer than those where spot enforcement policies have been in place.In this paper, a procedure for consistently setting speed limits with such enforcement systems is proposed. Such a method has been applied to design the speed limits on two motorways in the district of Naples, Italy, where P2P enforcement systems became operational in 2009 and 2010. The speed limits, which were set using the Italian geometric design standard to assess vehicle stability and stopping sight distance, have been compared with those provided by using well-known international standards.The impact of the newly designed speed limits and of the P2P enforcement system on drivers’ speeding behaviour has been quantified for each highway section and vehicle type. In fact, accurate measurements of the average travel speeds of each vehicle crossing the enforced sections, before and after the activation of the system, were available. The migration from the old speed limits with spot speed enforcement to the new approach resulted in a notable increase in drivers’ compliance to the speed limits with a remarkable decrease in both the average of individual speeds and in their standard deviation.In addition, the analysis of 3 years of data shows that a gradual adaptation of drivers’ behaviour to the system took place. In particular, a decreasing compliance to the speed limits points to a non-optimal system management. Finally, the results of a revealed preference survey allowed us to make a behavioural interpretation regarding the significantly different impacts measured on the two motorways.  相似文献   

18.
Traffic signals on urban highways force vehicles to stop frequently and thus causes excessive travel delay, extra fuel consumption and emissions, and increased safety hazards. To address these issues, this paper proposes a trajectory smoothing method based on Individual Variable Speed Limits with Location Optimization (IVSL-LC) in coordination with pre-fixed traffic signals. This method dynamically imposes speed limits on some identified Target Controlled Vehicles (TCVs) with Vehicle to Infrastructures (V2I) communication ability at two IVSL points along an approaching lane. According to real-time traffic demand and signal timing information, the trajectories of each approaching vehicle are made to run smoothly without any full stop. Essentially, only TCVs’ trajectories need to be controlled and the other vehicles just follow TCVs with Gipps’ car-following model. The Dividing RECTangles (DIRECT) algorithm is used to optimize the locations of the IVSLs. Numerical simulation is conducted to compare the benchmark case without vehicle control, the individual advisory speed limits (IASL) and the proposed IVSL-LC. The result shows that compared with the benchmark, the IVSL-LC method can greatly increase traffic efficiency and reduce fuel consumption. Compared with IASL, IVSL-LC has better performance across all traffic demand levels, and the improvements are the most under high traffic demand. Finally, the results of compliance analysis show that the effect of IVSL-LC improves as the compliance rate increases.  相似文献   

19.
This paper addresses the problem of the hybrid control of autonomous vehicles driving on automated highways. Vehicles are autonomous, so they do not communicate with each other nor with the infrastructure. Two problems have to be dealt with: a vehicle driving in a single-lane highway must never collide with its leading vehicle; and a vehicle entering the highway at a designated entry junction must be able to merge from the merging lane to the main lane, again without any collision. To solve these problems, we equip each vehicle with a hybrid controller, consisting of several continuous control laws embedded inside a finite state automaton. The automaton specifies when a given vehicle must enter the highway, merge into the main lane, yield to other vehicles, exit from the highway, and so on. The continuous control laws specify what acceleration the vehicle must have in order to avoid collisions with nearby vehicles. By carefully designing these control laws and the conditions guarding the automaton transitions, we are able to demonstrate three important results. First, we state the initial conditions guaranteeing that a following vehicle never collides with its leading vehicle. Second, we extend this first result to a lane of autonomous vehicles. Third, we prove that if all the vehicles are equipped with our hybrid controller, then no collision can ever occur, and all vehicles either merge successfully or are forced to drop out when they reach the end of their merging lane. Finally, we show the outcome of a highway microsimulation modelled after the Katy Corridor near Houston, Texas: our single-lane highway can accommodate 4000 vehicles per hour with neither drop-outs nor traffic congestion. It is entirely programmed in SHIFT, a hybrid systems simulation language developed at UC Berkeley by the PATH group. This shows that SHIFT is a well suited language for designing safe control laws for autonomous highway systems, among others.  相似文献   

20.
In this paper, we present results regarding the experimental validation of connected automated vehicle design. In order for a connected automated vehicle to integrate well with human-dominated traffic, we propose a class of connected cruise control algorithms with feedback structure originated from human driving behavior. We test the connected cruise controllers using real vehicles under several driving scenarios while utilizing beyond-line-of-sight motion information obtained from neighboring human-driven vehicles via vehicle-to-everything (V2X) communication. We experimentally show that the design is robust against variations in human behavior as well as changes in the topology of the communication network. We demonstrate that both safety and energy efficiency can be significantly improved for the connected automated vehicle as well as for the neighboring human-driven vehicles and that the connected automated vehicle may bring additional societal benefits by mitigating traffic waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号