首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
A multimodal, multiclass stochastic dynamic traffic assignment model was developed to evaluate pre‐trip and enroute travel information provision strategies. Three different information strategies were examined: user optimum [UO], system optimum [SO] and mixed optimum [MO]. These information provision strategies were analyzed based on the levels of traffic congestion and market penetration rate for the information equipment. Only two modes, bus and car, were used for evaluating and calculating the modal split ratio. Several scenarios were analyzed using day‐to‐day and within day dynamic models. From the results analyzed, it was found that when a traffic manager provides information for drivers using the UO strategy and drivers follow the provided information absolutely, the total travel time may increases over the case with no information. Such worsening occurs when drivers switch their routes and face traffic congestion on the alternative route. This phenomenon is the 'Braess Paradox'.  相似文献   

2.
This paper first develops a network equilibrium model with the travel time information displayed via variable message signs (VMS). Specifically, the equilibrium considers the impact of the displayed travel time information on travelers’ route choices under the recurrent congestion, with the endogenous utilization rates of displayed information by travelers. The existence of the equilibrium is proved and an iterative solution procedure is provided. Then, we conduct the sensitivity analyses of the network equilibrium and further propose a paradox, i.e., providing travel time information via VMS to travelers may degrade the network performance under some poor designs. Therefore, we investigate the problem of designing the VMS locations and travel time display within a given budget, and formulate it as a mixed integer nonlinear program, solved by an active-set algorithm. Lastly, numerical examples are presented to offer insights on the equilibrium results and optimal designs of VMS.  相似文献   

3.
This paper uses a Stated Preference approach to undertake a detailed assessment of the effect on drivers’ route choice of information provided by variable message signs (VMS). Although drivers’ response to VMS information will vary according to the availability of alternative routes and the extent to which they are close substitutes, our findings show that route choice can be strongly influenced by the provision of information about traffic conditions ahead. This has important implications for the use of VMS systems as part of comprehensive traffic management and control systems. The principal findings are that the impact of VMS information depends on: the content of the message, such as the cause of delay and its extent; local circumstances, such as relative journey times in normal conditions; and drivers’ characteristics, such as their age, sex and previous network knowledge. The impact of qualitative indicators, visible queues and delays were examined. It was found that not only is delay time more highly valued than normal travel time, which is to be expected, but that drivers become more sensitive to delay time as delay times increased across the range presented.  相似文献   

4.
Advanced Traveler Information Systems (ATIS) provide travelers with real time traffic information to optimize their travel choices. The objective of this paper is to model drivers' diversion from their normal routes in the provision of ATIS. Five different scenarios of traffic information are used. Generalized Estimating Equations (GEE) framework with repeated observations and binomial probit link function is introduced and implemented. GEE with four different correlation structures including the independent case are developed and compared with each other and with regular Maximum Likelihood Estimation (MLE). A travel simulator was used. Sixty-five subjects have traveled 10 simulated trial days each on a 40-link realistic network with real historical congestion levels. The results showed that providing traffic information increases the probability of drivers' diversion from their normal routes. Adding advice to the pre-trip and/or en-route information encourages drivers to divert. Providing en-route in addition to the pre-trip information with or without advice increases the diversion probability. High travel time on the normal route and less travel time on the diverted route increase the probability of diversion. High-educated drivers are less likely to divert. Expressway users are more likely to divert from their normal routes under ATIS. Drivers' familiarity with the device that provides the information and high number of traffic signals on the normal route increase the diversion probability.  相似文献   

5.
Yang  Hai 《Transportation》1999,26(3):299-322
When drivers do not have complete information on road travel time and thus choose their routes in a stochastic manner or based on their previous experience, separate implementations of either route guidance or road pricing cannot drive a stochastic network flow pattern towards a system optimum in a Wardropian sense. It is thus of interest to consider a combined route guidance and road pricing system. A road guidance system could reduce drivers' uncertainty of travel time through provision of traffic information. A driver who is equipped with a guidance system could be assumed to receive complete information, and hence be able to find the minimum travel time routes in a user-optimal manner, while marginal-cost road pricing could drive a user-optimal flow pattern toward a system optimum. Therefore, a joint implementation of route guidance and road pricing in a network with recurrent congestion could drive a stochastic network flow pattern towards a system optimum, and thus achieve a higher reduction in system travel time. In this paper the interaction between route guidance and road pricing is modeled and the potential benefit of their joint implementation is evaluated based on a mixed equilibrium traffic assignment model. The private and system benefits under marginal-cost pricing and varied levels of market penetration of the information systems are investigated with a small and a large example. It is concluded that the two technologies complement each other and that their joint implementation can reduce travel time more efficiently in a network with recurrent congestion.  相似文献   

6.
Variable message signs (VMS) can provide up‐to‐date traffic information and guidance to drivers through electronic signs at the roadside. The paper draws together the results from VMS field trials conducted in nine cities as part of European Union‐sponsored research projects carried out between 1994 and 1999. The projects followed common guidelines in carrying out field trial evaluations, which has enabled generalized findings to be made on the impacts of the different VMS applications. The main emphasis in the paper is on drivers' reactions to VMS and the impacts of VMS on road network efficiency. Results are reported for four different types of traffic information. For incident messages, it is not only the severity of the problem reported that influences the level of diversions, but also other factors such as the specific location mentioned and the availability of viable alternative routes to avoid the problem location. For route guidance information, it is demonstrated that substantial diversions occur when the route advice differs from that given normally. For continuous information describing the traffic state on a major route, information increases the use of the major route and reduces use of alternative routes if there are no traffic problems reported on the major route. Travel time information was well regarded by drivers and found to be effective in inducing route changes. In general, the deployments of VMS to inform drivers of traffic conditions have proved successful in terms of improving network travel times and reducing environmental impacts. Whilst such changes have been relatively small, driver perception of the benefits is much higher. This is potentially very significant in terms of the role that VMS can play in the development of integrated transport strategies, as the provision of information may encourage greater acceptance of a range of demand management measures.  相似文献   

7.
This study investigates the routing aspects of battery electric vehicle (BEV) drivers and their effects on the overall traffic network performance. BEVs have unique characteristics such as range limitation, long battery recharging time, and recuperation of energy lost during the deceleration phase if equipped with regenerative braking system (RBS). In addition, the energy consumption rate per unit distance traveled is lower at moderate speed than at higher speed. This raises two interesting questions: (i) whether these characteristics of BEVs will lead to different route selection compared to conventional internal combustion engine vehicles (ICEVs), and (ii) whether such route selection implications of BEVs will affect the network performance. With the increasing market penetration of BEVs, these questions are becoming more important. This study formulates a multi-class dynamic user equilibrium (MCDUE) model to determine the equilibrium flows for mixed traffic consisting of BEVs and ICEVs. A simulation-based solution procedure is proposed for the MCDUE model. In the MCDUE model, BEVs select routes to minimize the generalized cost which includes route travel time, energy related costs and range anxiety cost, and ICEVs to minimize route travel time. Results from numerical experiments illustrate that BEV drivers select routes with lower speed to conserve and recuperate battery energy while ICEV drivers select shortest travel time routes. They also illustrate that the differences in route choice behavior of BEV and ICEV drivers can synergistically lead to reduction in total travel time and the network performance towards system optimum under certain conditions.  相似文献   

8.
This paper presents a dynamic vehicle routing and scheduling model that incorporates real time information using variable travel times. Dynamic traffic simulation was used to update travel times. The model was applied to a test road network. Results indicated that the total cost decreased by implementing the dynamic vehicle routing and scheduling model with the real time information based on variable travel times compared with that of the forecast model. As well, in many cases total running times of vehicles were also decreased. Therefore, the dynamic vehicle routing and scheduling model will be beneficial for both carriers in reducing total costs and society at large by alleviating traffic congestion.  相似文献   

9.
A driver is one of the main components in a transportation system that influences the effectiveness of any active demand management (ADM) strategies. As such, the understanding on driver behavior and their travel choice is crucial to ensure the successful implementation of ADM strategies in alleviating traffic congestion, especially in city centres. This study aims to investigate the impact of traffic information dissemination via traffic images on driver travel choice and decision. A relationship of driver travel choice with respect to their perceived congestion level is developed by an integrated framework of genetic algorithm–fuzzy logic, being a new attempt in driver behavior modeling. Results show that drivers consider changing their travel choice when the perceived congestion level is medium, in which changing departure time and diverting to alternative roads are two popular choices. If traffic congestion escalates further, drivers are likely to cancel their trip. Shifting to public transport system is the least likely choice for drivers in an auto-dependent city. These findings are important and useful to engineers as they are required to fully understand driver (user) sensitivity to traffic conditions so that relevant active travel demand management strategies could be implemented successfully. In addition, engineers could use the relationships established in this study to predict drivers’ response under various traffic conditions when carrying out modeling and impact studies.  相似文献   

10.
The problem addressed here involves a controller seeking to enhance traffic network performance via real-time routing information provision to drivers while explicitly accounting for drivers’ likely reactions towards the information. A fuzzy control modeling approach is used to determine the associated behavior-consistent information-based network control strategies. Experiments are performed to compare the effectiveness of the behavior-consistent approach with traditional dynamic traffic assignment based approaches for deployment. The results show the importance of incorporating driver behavior realistically in the determination of the information strategies. Significant differences in terms of system travel time savings and compliance to the information strategies can be obtained when the behavior-consistent approach is compared to the traditional approaches. The behavior-consistent approach can provide more robust performance compared to the standard user or system optimal information strategies. Subject to a meaningful estimation of driver behavior, it can ensure system performance improvement. By contrast, approaches that do not seek to simultaneously achieve the objectives of the drivers and the controller can potentially deteriorate system performance because the controller may over-recommend or under-recommend some routes, or recommend routes that are not considered by the drivers.  相似文献   

11.
Providing travel time information may be effective at reducing travel costs. However, this information does not always match the actual travel time that travellers will experience. Furthermore, the information is often asymmetrically provided within the network, owing to the limitations of observation devices, prediction model calibration, and uncertainty about road conditions. The purpose of this study is to investigate the effects of predictive travel time information that is asymmetrically provided to travellers. This study formulated a dynamic traffic assignment model in origin–destination (OD) pair with two parallel routes, while considering travellers’ learning processes and within-day and day-to-day dynamics. In this study, it is assumed that different information will be provided to each traveller, according to within-day traffic dynamics. Furthermore, the information is provided for only one of two possible routes, because of observation limitations. The effects of information accuracy are also discussed in this study. The results of numerical analysis indicated that information provisions possibly reduced the negative effects of deluded equilibrium state, even when the information was only provided for one of the routes. Different effects of the travel time information and its variation were illustrated according to the allocation of the bottleneck capacities of two routes.  相似文献   

12.
Congestion pricing is one of the widely contemplated methods to manage traffic congestion. The purpose of congestion pricing is to manage traffic demand generation and supply allocation by charging fees (i.e., tolling) for the use of certain roads in order to distribute traffic demand more evenly over time and space. This study presents a framework for large-scale variable congestion pricing policy determination and evaluation. The proposed framework integrates departure time choice and route choice models within a regional dynamic traffic assignment (DTA) simulation environment. The framework addresses the impact of tolling on: (1) road traffic congestion (supply side), and (2) travelers’ choice dimensions including departure time and route choices (demand side). The framework is applied to a simulation-based case study of tolling a major freeway in Toronto while capturing the regional effects across the Greater Toronto Area (GTA). The models are developed and calibrated using regional household travel survey data that reflect the heterogeneity of travelers’ attributes. The DTA model is calibrated using actual traffic counts from the Ontario Ministry of Transportation and the City of Toronto. The case study examined two tolling scenarios: flat and variable tolling. The results indicate that: (1) more benefits are attained from variable pricing, that mirrors temporal congestion patterns, due to departure time rescheduling as opposed to predominantly re-routing only in the case of flat tolling, (2) widespread spatial and temporal re-distributions of traffic demand are observed across the regional network in response to tolling a significant, yet relatively short, expressway serving Downtown Toronto, and (3) flat tolling causes major and counterproductive rerouting patterns during peak hours, which was observed to block access to the tolled facility itself.  相似文献   

13.
We consider a specific advanced traveler information systems (ATIS) whose objective is to reduce drivers’ travel time uncertainty with recurrent network congestion through provision of traffic information. Since the provided information is still partial or imperfect, drivers equipped with an ATIS cannot always find the shortest travel time route and thus may not always comply with the advice provided by ATIS. Thus, there are three classes of drivers on a specific day: drivers without ATIS, drivers with ATIS but without compliance with ATIS advice, drivers with ATIS and in compliance with ATIS advice. All three classes of drivers make route choice in a stochastic manner, but with different degree of uncertainty of travel time on the network. In this paper we investigate the interactions among the three classes of drivers in an ATIS environment using a multiple behavior stochastic user equilibrium model. By assuming that the market penetration of ATIS is an increasing function of the actual private gain (time saving minus the cost associated with system use) derived from ATIS service, and the ATIS compliance rate of equipped drivers is given as the probability of the actual travel time of complied drivers being less than that of non-complied drivers, we determine the equilibrium market penetration and compliance rate of ATIS and the resulting equilibrium network flow pattern using an iterative solution procedure.  相似文献   

14.
This paper investigates the reliability of information on prevailing trip times on the links of a network as a basis for route choice decisions by individual drivers. It considers a type of information strategy in which no attempt is made by some central controller or coordinating entity to predict what the travel times on each link would be by the time it is reached by a driver that is presently at a given location. A specially modified model combining traffic simulation and path assignment capabilities is used to analyze the reliability of the real-time information supplied to the drivers. This is accomplished by comparing the supplied travel times (at the link and path levels) to the actual trip times experienced in the network after the information has been given. In addition, the quality of the decisions made by drivers on the basis of this information (under alternative path switching rules) is evaluated ex-post by comparing the actually experienced travel time (given the decision made) to the time that the driver would have experienced without the real-time information. Results of a series of simulation experiments under recurrent congestion conditions are discussed, illustrating the interactions between information reliability and user response.  相似文献   

15.
Modeling Travel Time Under ATIS Using Mixed Linear Models   总被引:1,自引:0,他引:1  
The objective of this paper is to model travel time when drivers are equipped with pre-trip and/or en-route real-time traffic information/advice. A travel simulator with a realistic network and real historical congestion levels was used as a data collection tool. The network included 40 links and 25 nodes. This paper presents models of the origin-to-destination travel time and en-route short-term route (link) travel time under five different types and levels of advanced traveler information systems (ATIS). Mixed linear models with the repeated observation's technique were used in both models. Different covariance structures (including the independent case) were developed and compared. The effect of correlation was found significant in both models. The trip travel time analysis showed that as the level of information increases (adding en-route to the pre-trip and advice to the advice-free information), the average travel time decreases. The model estimates show that providing pre-trip and en-route traffic information with advice could result in significant savings in the overall travel time. The en-route short-term (link) travel time analysis showed that the en-route short-term (link) information has a good chance of being used and followed. The short-term qualitative information is more likely to be used than quantitative information. Learning and being familiar with the system that provides the information decreases en-route short-term delay.  相似文献   

16.
Congestion pricing has been proposed and investigated as an effective means of optimizing traffic assignment, alleviating congestion, and enhancing traffic operation efficiencies. Meanwhile, advanced traffic information dissemination systems, such as Advanced Traveler Information System (ATIS), have been developed and deployed to provide real-time, accurate, and complete network-wide traffic information to facilitate travelers’ trip plans and routing selections. Recent advances in ATIS technologies, especially telecommunication technology, allow dynamic, personalized, and multimodal traffic information to be disseminated and impact travelers’ choices of departure times, alternative routes, and travel modes in the context of congestion pricing. However, few studies were conducted to determine the impact of traffic information dissemination on toll road utilizations. In this study, the effects of the provisions of traffic information on toll road usage are investigated and analyzed based on a stated preference survey conducted in Texas. A Bayesian Network (BN)-based approach is developed to discover travelers’ opinions and preferences for toll road utilization supported by network-wide traffic information provisions. The probabilistic interdependencies among various attributes, including routing choice, departure time, traffic information dissemination mode, content, coverage, commuter demographic information, and travel patterns, are identified and their impacts on toll road usage are quantified. The results indicate that the BN model performs reasonably well in travelers’ preference classifications for toll road utilization and knowledge extraction. The BN Most Probable Explanation (MPE) measurement, probability inference and variable influence analysis results illustrate travelers using highway advisory radio and internet as their primary mode of receiving traffic information are more likely to comply with routing recommendations and use toll roads. Traffic information regarding congested roads, road hazard warnings, and accident locations is of great interest to travelers, who tend to acquire such information and use toll roads more frequently. Travel time formation for home-based trips can considerably enhance travelers’ preferences for toll road usage. Female travelers tend to seek traffic information and utilize toll roads more frequently. As expected, the information provided at both pre-trip and en-route stages can positively influence travelers’ preferences for toll road usage. The proposed methodology and research findings advance our previous study and provide insight into travelers’ behavioral tendencies concerning toll road utilization in support of traffic information dissemination.  相似文献   

17.
18.
ABSTRACT

Incidents are a major source of traffic congestion and can lead to long and unpredictable delays, deteriorating traffic operations and adverse environmental impacts. The emergence of connected vehicles and communication technologies has enabled travelers to use real-time traffic information. The ability to exchange traffic information among vehicles has tremendous potential impacts on network performance especially in the case of non-recurrent congestion. To this end, this paper utilizes a microscopic simulation model of traffic in El Paso, Texas to investigate the impacts of incidents on traffic operation and fuel consumption at different market penetration rates (MPR) of connected vehicles. Several scenarios are implemented and tested to determine the impacts of incidents on network performance in an urban area. The scenarios are defined by changing the duration of incidents and the number of lanes closed. This study also shows how communication technology affects network performance in response to congestion. The results of the study demonstrate the potential effectiveness of connected vehicle technology in improving network performance. For an incident with a duration of 900?s and MPR of 80%, total fuel consumption and total travel time decreased by approximately 20%; 26% was observed in network-wide travel time and fuel consumption at 100% MPR.  相似文献   

19.
This paper investigates the effects of the provision of traffic information on toll road usage based on a stated preference survey conducted in central Texas. Although many researchers have studied congestion pricing and traffic information dissemination extensively, most of them focused on the effects that these instruments individually produce on transportation system performance. Few studies have been conducted to elaborate on the impacts of traffic information dissemination on toll road utilization. In this study, 716 individuals completed a survey to measure representative public opinions and preferences for toll road usage in support of various traffic information dissemination classified by different modes, contents, and timeliness categories. A nested logit model was developed and estimated to identify the significant attributes of traffic information dissemination, traveler commuting patterns, routing behavior, and demographic characteristics, and analyze their impacts on toll road utilization. The results revealed that the travelers using dynamic message sign systems as their primary mode of receiving traffic information are more likely to choose toll roads. The potential toll road users also indicated their desire to obtain traffic information via internet. Information regarding accident locations, road hazard warnings, and congested roads is frequently sought by travelers. Furthermore, high-quality congested road information dissemination can significantly enhance travelers’ preferences of toll road usage. Specifically the study found that travelers anticipated an average travel time saving of about 11.3 min from better information; this is about 30 % of travelers’ average one-way commuting time. The mean value of the time savings was found to be about $11.82 per hour, close to ½ of the average Austin wage rate. The model specifications and result analyses provide in-depth insights in interpreting travelers’ behavioral tendencies of toll road utilization in support of traffic information. The results are also helpful to shape and develop future transportation toll system and transportation policy.  相似文献   

20.
Travel time is an effective measure of roadway traffic conditions. The provision of accurate travel time information enables travelers to make smart decisions about departure time, route choice and congestion avoidance. Based on a vast amount of probe vehicle data, this study proposes a simple but efficient pattern-matching method for travel time forecasting. Unlike previous approaches that directly employ travel time as the input variable, the proposed approach resorts to matching large-scale spatiotemporal traffic patterns for multi-step travel time forecasting. Specifically, the Gray-Level Co-occurrence Matrix (GLCM) is first employed to extract spatiotemporal traffic features. The Normalized Squared Differences (NSD) between the GLCMs of current and historical datasets serve as a basis for distance measurements of similar traffic patterns. Then, a screening process with a time constraint window is implemented for the selection of the best-matched candidates. Finally, future travel times are forecasted as a negative exponential weighted combination of each candidate’s experienced travel time for a given departure. The proposed approach is tested on Ring 2, which is a 32km urban expressway in Beijing, China. The intermediate procedures of the methodology are visualized by providing an in-depth quantitative analysis on the speed pattern matching and examples of matched speed contour plots. The prediction results confirm the desirable performance of the proposed approach and its robustness and effectiveness in various traffic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号