首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
常泰长江大桥为主跨1176 m的双塔双索面公铁两用双层斜拉桥.为研究侧风作用下该桥的动力响应以及桥上高速列车的行车安全性,采用WT TBDAS V2.0软件建立风-车-线-桥耦合分析模型,分析不同风速及车速下单、双线CRH2列车通过桥梁时车辆和桥梁的动力响应.结果表明:桥梁主跨跨中横向位移和横、竖向加速度随风速增大而增...  相似文献   

2.
为研究波浪对跨海桥梁风车-桥耦合振动系统的影响,针对跨海桥梁所处风大、浪高的极端环境,建立了波浪-风-列车-桥梁动力模型,将风场视为空间相关的平稳高斯过程,高速列车采用质点-弹簧-阻尼器模型模拟,精细化全桥模型通过有限元方法建立,考虑风-列车-桥梁之间的耦合作用,波浪作为外部荷载施加到该耦合体系中。以主跨532 m某海洋桥梁为例,通过自主研发的桥梁科研软件BANSYS (Bridge Analysis System),分析了波高、风速、车速对耦合模型车辆和桥梁响应的影响。结果表明:风车-桥耦合振动体系的车辆和桥梁响应受波浪影响显著,车辆和桥梁响应在与波浪荷载一致的方向增加显著,15 m·s-1风速下,考虑波浪影响的车辆横向加速度最大值约是不考虑波浪时的1.3倍,考虑波浪影响的跨中横向位移最大值约是不考虑波浪时的22倍,而在非一致方向波浪对车-桥响应的影响较小;不同风速下,波浪对车辆横向加速度影响显著,考虑波浪影响的车辆横向加速度约是不考虑波浪时的1.2倍,而车辆竖向加速度、轮重加载率、倾覆系数等指标主要受风速的影响;波浪基频与桥梁横向位移响应谱主峰频率一致,波浪已成为影响桥梁横向位移响应的控制因素;波浪减弱了车速对车-桥响应的影响,随着波高的增加,车辆和桥梁响应对车速的变化更不敏感。  相似文献   

3.
基于风-车-桥耦合系统振动理论,建立风-车-桥耦合系统的运动方程。运用自编风-车-桥耦合程序,计算不同路面、不同车速和不同风速下车轮竖向接触力,分析路面等级、车速和风速对车辆行驶安全性的影响;以车轮折算压力为标准,采用概率统计方法建立车辆侧滑和侧倾事故模型,提高事故分析的可靠性,并结合工程实例,对风环境下车辆的动力响应进行了分析。计算了车辆行驶在不同车速下侧倾临界风速、不同风速下侧倾临界车速和4种不同路面状况下侧滑临界风速,为车辆在桥上行驶安全风速和车速确定提供依据。  相似文献   

4.
为研究桥上风屏障局部破坏对桥梁列车行车安全性的影响,以某四塔公铁两用斜拉桥为背景,进行列车动力响应和行车安全性影响参数分析。推导列车通过风屏障破坏段时车辆和桥梁的风荷载,并通过桥梁和列车节段模型风洞试验,测得计算所需气动力系数;在此基础上建立风-车-轨-桥耦合振动模型,研究了风屏障破坏段长度、平均风速和列车车速对列车动力响应及行车安全的影响。结果表明:突风效应会导致列车横向位移达到最大值,遮风效应会使列车横向加速度达到最大值;随风屏障破坏段长度、平均风速和列车车速的增加,列车动力响应随之增加;风屏障破坏会增加列车的轮重减载率和脱轨系数,并且高风速下各节车辆在风屏障破坏段的脱轨系数差异较大;仅在风速不大于10 m/s时,列车可以180 km/h的车速安全通过风屏障破坏段。  相似文献   

5.
为了研究大跨桥梁在风、车及地震联合作用下的动力响应,在已有风-车-桥耦合振动分析程序的基础上,利用大质量法模拟桥梁受到的地震作用,建立了地震-风-车-桥耦合振动分析的数值模拟平台,通过质量-弹簧-阻尼系统模拟车辆模型,利用有限元方法建立桥梁模型,采用谱表示法模拟路面粗糙度、风场和地震动,通过分离迭代方法求解地震-风-车-桥耦合振动系统的动力响应。以主跨1 088 m的苏通大桥为例,基于建立的地震-风-车-桥耦合振动分析平台,计算分析了日常风荷载与地震联合作用下桥梁和车辆的动力响应;并进一步探究了地震动完全空间变异性对地震-风-车-桥耦合系统车桥动力响应的影响。结果表明:处于日常运营阶段的大跨桥梁结构(仅承受风和车辆荷载)受到突发地震时,桥梁和桥上行驶车辆的动力响应将急剧增加,地震动对车-桥系统动力响应起控制作用;与地震-车-桥系统中的桥梁响应相比,考虑风荷载会增加主梁跨中的横向振动,但对主梁跨中的竖向振动会有抑制作用;与只考虑地震荷载作用的车桥响应相比,同时考虑地震和平均风速为20 m·s-1的脉动风荷载联合作用下的主梁跨中横向位移极值最大增大约40%。虽然地震动是车桥耦合振动的控制荷载,但是日常风荷载对大跨桥梁车桥振动的影响不可忽略。地震发生后,车辆的横向加速度极值超过0.5g,竖向加速度极值接近1g,可能引起车辆的侧滑或翻滚,车辆的运行行为有待进一步研究。与仅考虑地震动行波效应相比,考虑地震动完全空间变异性的车桥振动响应不仅在波形上产生很大差异,而且响应极值也发生了较大的变化,可见在地震动输入时需要考虑完全空间变异性来保证得到的车桥响应结果偏于安全。  相似文献   

6.
沪通长江大桥主航道桥为主跨1 092m的公铁两用连续钢桁梁斜拉桥,主航道桥两侧为跨度112m的钢桁简支梁桥,主航道桥、钢桁梁桥间设置伸缩量为±900 mm的梁端伸缩装置。为考察该桥伸缩缝对列车和桥梁动力响应的影响,针对其梁端伸缩装置初步设计的比选方案进行车线桥动力性能研究。按照实际情况建立包括主航道桥、钢桁梁桥和梁端伸缩装置的完整桥梁结构模型,采用逐步积分法分析车桥耦合振动。结果表明,梁端伸缩装置与两侧主航道桥、钢桁梁桥上的轨道结构变形存在差异,此梁端附近区域的局部不平顺造成了对车辆和伸缩装置的冲击,使得部分工况下车辆响应超限,支承梁的加速度与铜陵长江大桥的梁端伸缩装置设计方案相比偏高,尤其在主梁收缩状态下,上述情况更为明显。  相似文献   

7.
重庆至利川铁路韩家沱长江大桥为客货共线双线铁路桥,主桥采用(81+135+432+135+81)m钢桁梁斜拉桥。为保证其动力安全性,对行车和地震引起的结构振动、钢桁梁风致振动及风-车-桥系统耦合振动控制技术进行研究。该桥塔梁约束采用组合控制体系,即利用带控制开关的新型锁定装置控制行车引起的结构振动,利用液压粘滞阻尼器控制桥梁的地震响应,二者协同工作。采用在下弦杆底部设置外张导流板的措施抑制钢桁梁在低风速下的竖向涡激振动现象,导流板吊点高度设为0.6m、倾角设为5.5°,导流板纵向分段长度取为1倍导流板宽度。根据风-车-桥耦合振动分析,考虑安全因素,制定各种风速下列车运行时的车速标准。经多年通车运营检验,该桥动力响应控制技术效果良好。  相似文献   

8.
为了研究风-车-桥耦合系统中车-桥系统的振动特性及车辆行车安全特性,得到车辆在大跨度桥梁上行驶时车辆的安全行驶临界风速,对车辆通过大跨斜拉桥时车辆的气动特性、车-桥系统的振动特性及车辆的行车安全特性进行研究。研究风荷载作用下车辆在大跨度桥上行驶时车辆的行车安全临界风速,分析车辆行驶速度、路面状况及风偏角对车辆行驶安全临界风速的影响。车-桥系统的耦合振动会导致车-桥系统周围风场的特性发生变化,风场的变化会导致下一时刻车-桥系统的受力状态发生改变。考虑车辆运动及车-桥系统的振动与车-桥周围风场的相互影响,基于双向流固耦合数值模拟,建立风-汽车-桥梁空间耦合振动数值分析模型。通过风-车-桥耦合系统三维数值分析,得到了风荷载作用下车辆在大跨度桥上行驶时不同状况下车辆的倾覆及侧滑临界风速。结果表明:基于双向流固耦合数值分析能够较精确地模拟风-车-桥耦合振动系统;风荷载作用下车辆在桥上行驶时,车辆的振动特性主要由汽车-桥梁系统决定,车-桥系统的振动特性受自然风荷载影响;侧向风荷载作用下车辆的倾覆力矩系数及侧向力系数并不一定为最大值,车辆在大跨径桥上行驶受侧向风荷载作用并不一定为行车安全分析的最不利状况。  相似文献   

9.
为使列车高速通过大跨度铁路钢桁拱桥时具有良好的走行性,同时使桥梁具有良好的动力安全性,对该类桥梁的车-桥耦合振动进行分析.基于车-桥耦合振动理论,采用三角级数法模拟轨道随机不平顺,联立轮对沉浮振动及侧滚振动方程迭代求解轮轨力,采用迭代法求解桥梁及车辆响应.以南京大胜关长江大桥为例,采用推荐方法对该桥在不同列车(德国ICE3动力分散式高速列车、中华之星列车、南京轻轨列车、空载P62货物列车)以不同速度通过时,桥梁和车辆的动力性能进行分析.分析结果表明,该桥安全性和列车安全性、平稳性指标均满足要求,列车平稳性优良,推荐的计算模型及简化方法可用于同类桥梁的车-桥耦合振动分析.  相似文献   

10.
双工字钢-混凝土板组合梁桥自重轻,车辆质量与主梁模态质量之比可达到1/10,可能出现过大的动力响应导致行车舒适性差,危及行车安全。为了研究该类桥车桥耦合振动机理及影响因素,对某在建的单跨35m四跨一联的双工字钢-混凝土板组合梁桥进行动力特性分析、车桥耦合振动数值模拟及行车动力响应测试。结果表明:该类桥前4阶固有频率较为接近,在不同载重和车速下可能会发生多个频率的振动,车辆过桥的附加惯性质量使结构的振动频率有所降低;试验车过桥的速度和加速度评估该桥舒适性较好;车辆载重与车速对冲击系数的影响复杂,无明显规律,路面等级越好和阻尼比越大,冲击系数越小,对桥面进行平整度处理和增加结构阻尼是降低振幅和车辆冲击效应及提高舒适性的有效方法。  相似文献   

11.
江苏省芜申线航道泓口大桥主桥为(52+102+52)m自锚式悬索桥.该桥加劲梁采用预应力混凝土边箱梁形式,在支架上现浇施工;桥塔采用钢筋混凝土矩形实心截面柱式结构,桥塔高27.902m,下部采用整体式哑铃形承台;主缆采用Φ4.8 mm镀锌高强钢丝,吊索采用φ7 mm镀锌高强平行钢丝,鞍座为整体铸造结构.采用有限元软件MIDAS Civil 2010和悬索桥非线性分析软件BNLAS建立全桥有限元模型进行计算分析,计算结果表明泓口大桥结构的应力均能满足规范要求.  相似文献   

12.
重庆双碑大桥主桥斜拉桥设计   总被引:2,自引:2,他引:0  
重庆双碑大桥主桥为主跨330 m的高、低塔中央索面混凝土曲线斜拉桥。主梁采用单箱三室混凝土结构。桥塔采用独柱式,低塔边跨侧位于曲线上,为减少索的横向分力对结构的影响,靠曲线外侧布置竖向预应力钢绞线束。斜拉索采用高强低松弛镀锌钢绞线索。结合地质情况,高塔墩采用24根φ2.5 m钻孔灌注桩基础;低塔墩采用明挖扩大基础。高、低塔均采用塔、墩、梁固结体系。为减少塔根弯矩,下塔墩中间设20 cm的竖缝;通过优化桥塔尺寸,有效控制了主梁横向扭转角和桥塔横向位移。高塔墩基础采用双壁钢围堰法施工,低塔墩基础采用围堰或筑岛辅助施工;主梁7 m标准节段采用前支点挂篮现浇施工。  相似文献   

13.
宜昌长江公路大桥桥位、桥型及桥跨的选择   总被引:1,自引:0,他引:1  
宜昌长江公路大桥桥型选择为双塔钢箱梁悬索桥,主跨960m。桥位,桥型及桥跨的选择是该桥前期准备工作的主要技术问题,着重介绍桥位,桥型及桥跨选择中考虑和研究的主要因素。  相似文献   

14.
丫髻沙大桥主桥设计   总被引:14,自引:0,他引:14  
丫髻沙大桥主桥采用76m+360m+76m三跨连续自锚中承式钢管混凝土拱桥,跨越珠江南航道。详细介绍了主桥的总体设计、几何非线性分析、徐变分析、动力分析。  相似文献   

15.
虎门大桥悬索桥钢箱梁架设   总被引:1,自引:0,他引:1  
钢箱梁梁段的架设属于大吨位构件的起重吊装,其影响面牵涉到通航,驳船运输及定位,塔身变形控制等,因此施工难度大,论文从虎门大桥悬索桥施工为实例,介绍了钢箱梁梁段架设中的主要工艺及使用设备。  相似文献   

16.
根据金塘大桥桥址气象、水文、地质等条件,分析了影响海上桥型方案的多种因素,结合国内外已建跨海大桥的经验,从减少海上作业量、降低施工风险、保证工程质量、合理控制工期、简化施工组织、降低工程造价等方面进行了综合分析,提出金塘大桥非通航孔桥的设计方案.  相似文献   

17.
江阴五星桥主桥为独塔单索面不对称斜拉桥,跨度为(138 71)m,桥面宽达31 m。桥塔为上大下小独柱式结构,实心六边形截面。主梁为三向预应力混凝土结构,单箱五室。对该桥的主要设计特点进行介绍。  相似文献   

18.
为研究斜拉桥合理成桥状态的计算方法,以厦漳跨海大桥北汊主桥为背景,采用大型有限元软件TDV RM2006建立全桥有限元模型,通过优化结构成桥索力使主梁和桥塔达到设计期望的状态,用最小弯曲能量法初定近似合理的成桥状态,以该状态下的部分斜拉索索力和主梁弯矩作为目标向量,通过影响矩阵法求解所有斜拉索初张力,通过微调局部斜拉索的初张力修正几何非线性对静力优化结果的不利影响,最终确定北汊主桥的合理成桥状态.实践证明,最小弯曲能量法和影响矩阵法能很好地弥补相互间的局限性,能在较短的时间里确定斜拉桥的理想成桥状态.  相似文献   

19.
蔡俊镱 《桥梁建设》2021,(2):105-111
淡江大桥主桥跨越淡水河口,主桥采用单塔不对称半飘浮体系斜拉桥,全长920 m,跨径布置为(2×75+450+175+75+70)m,主跨450 m,桥面净宽44.7 m,桥下通航净高20 m,倒Y形桥塔高200 m。在桥塔及两端伸缩缝处的桥墩设置减隔震阻尼器,主梁采用钢箱梁(长660 m)及钢-混结合梁(长260 m),斜拉索按扇形双索面布置,共94根斜拉索。桥梁设计寿命为120年,依据基于性能的设计规范AASHTO LRFD及性能化抗震设计,结构强度满足规范要求。采用风洞试验与数值风力分析验证主桥结构的气动稳定性,结果表明当风速达100 m/s时,结构仍然稳定。  相似文献   

20.
结合多年来从事高速公路桥梁施工养护体会,总结水泥混凝土桥面铺装层病害种类并分析产生病害的原因,提出桥面铺装层综合养护措施,以供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号