首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究聚丙烯纤维增强的高强钢筋混凝土梁的受弯性能,对6根矩形截面梁进行了集中荷载作用下试验研究。对比分析了聚丙烯纤维增强的高强钢筋混凝土梁的受弯承载力、正常使用阶段的裂缝宽度。研究表明:聚丙烯纤维增强的高强钢筋混凝土梁的受力性能与普通钢筋混凝土梁相同,其裂缝宽度、受弯承载力均可以按照现行《混凝土结构设计规范》(GB 50010-2010)中相关公式计算。掺入聚丙烯纤维可以减小裂缝间距和裂缝宽度,以满足裂缝宽度限值的要求;同时还可以提高试件的抗裂能力。  相似文献   

2.
对16根混凝土梁进行抗裂试验研究和数值模拟,分析其开裂弯矩与纤维体积掺量的关系,并将试验结果与有限元分析结果进行对比.结果表明,适量加入钢-聚丙烯混杂纤维,可提高混凝土梁正截面开裂弯矩,并且随着钢纤维体积率的增加呈增长趋势,当聚丙烯纤维体积率固定为0.055%、0.11%、0.165%,钢纤维体积率达到最高1%时,其抗裂弯矩分别比普通高性能混凝土梁提高了26%、42.9%、26%,同时,影响其抗裂度大小的主要因素为钢纤维的体积掺量.  相似文献   

3.
通过试验研究了单掺聚丙烯纤维、钢纤维和复合钢纤维与聚丙烯纤维对C50防水混凝土力学、防渗及抗裂性能的影响。结果表明:纤维的掺入对混凝土的抗压强度影响不大,可明显提高其劈拉强度和抗裂性能,但会降低其抗水渗透和抗氯离子渗透性能,适量的聚丙烯纤维与钢纤维复掺可改善其防渗性能;复合钢纤维-聚丙烯纤维混凝土的性能优于单掺两种纤维的混凝土;1.05%体积掺量的钢纤维和0.15%体积掺量的聚丙烯纤维复合时,混凝土性能最佳。  相似文献   

4.
钢纤维能明显提升超高性能混凝土(Ultra-high Performance Concrete, UHPC)的抗拉强度与韧性,对UHPC构件的扭转行为有显著影响。为深入研究钢纤维特性对UHPC矩形梁抗扭性能的影响规律,以钢纤维体积掺量、类型、尺寸以及混杂效应等为变化参数,完成了8根UHPC矩形梁(含1根未掺钢纤维的对比梁)的纯扭试验;获得了各试件的纯扭破坏形态、扭矩-扭率曲线、扭矩-应变曲线、裂缝形态等关键数据。结果表明:对比梁为脆性破坏,纤维增强UHPC梁的破坏则是有征兆的;纤维增强UHPC梁的开裂和极限扭矩均明显大于对比梁,最大提升幅度分别达79%和159%;增加钢纤维体积掺量能提高开裂和极限扭矩,且斜裂缝数量更多、宽度更小;掺端钩纤维试件的抗扭承载能力和延性均优于掺圆直纤维试件;钢纤维长径比越大,试件的裂缝分布越密集,极限扭率越大,延性越好;2根混掺纤维试件的开裂和极限扭矩均大于单掺试件,正混杂效应明显;钢纤维类型和尺寸均会影响试件的裂后承载能力,掺长径比65的圆直钢纤维在开裂后迅速达到极限状态,极限与开裂扭矩之比为1.07~1.18,长径比为100时对应的比值为1.46,而掺端钩纤维则为1.34,介于两者之间。最后,提出了UHPC矩形梁开裂和极限扭矩计算公式;并对30根UHPC矩形梁进行了验证,结果表明计算公式精度良好。  相似文献   

5.
本文主要对不同聚丙烯纤维掺量的自密实钢筋混凝土梁在不同疲劳应力水平作用下的裂缝发展规律进行了弯曲疲劳试验研究,研究结果表明:聚丙烯纤维能在一定程度上抑制混凝土裂缝的扩展。同一疲劳应力水平作用下,随着聚丙烯纤维掺量的调高,试验梁的裂缝宽度及裂缝长度相应变小,但裂缝宽度及长度变化规律图与其增量变化规律图基本相似,且不同聚丙烯纤维掺量的自密实混凝土梁裂缝发展规律相近。相同聚丙烯纤维掺量的试验梁,作用的疲劳应力水平越高,其裂缝宽度及长度增长速度越快;同一疲劳应力水平作用,聚丙烯纤维掺量越大的试验梁,其裂缝宽度及长度增长速度越慢。  相似文献   

6.
从提高混凝土路面韧性和耐磨耗性出发,分析了不同体积掺量(0,0.5%,1%)聚乙烯纤维和不同取代量(0,30%,50%)粉煤灰对混凝土弯拉强度、弯韧度指数、裂后强度以及耐磨耗性的影响。结果表明:聚乙烯纤维对弯拉强度和韧度的贡献较大;试件FFFO弯韧度指数比FFFZ高1.8倍;高掺粉煤灰(50%)和聚乙烯纤维(体积分数为1%)组合的28 d强度满足公路设计要求;聚丙烯纤维与粉煤灰(30%)的组合对耐磨耗性贡献最大;耐磨耗性随纤维掺量的增多而增强,与纤维掺量有二次函数的关系;纤维掺量对弯韧度指数和裂后强度的影响有相同的倾向。  相似文献   

7.
为研究掺钢纤维无配筋超高性能混凝土(UHPC)矩形梁的抗扭性能,分析钢纤维类型对梁体纯扭受力行为的影响,设计制作4根UHPC矩形梁[包括未掺钢纤维试件1根;掺短圆直、长圆直、端钩钢纤维试件各1根(钢纤维长分别为13,20,13 mm,直径均为0.2 mm,体积掺量均为2%)],并设计1套纯扭加载装置进行试件纯扭试验。基于试验结果,分析各试件在纯扭作用下的扭矩~扭率曲线、开裂和极限扭矩、扭矩~应变曲线、裂缝分布等,并推导UHPC矩形梁的抗扭承载力计算公式,将计算值与试验值进行对比验证。结果表明:掺入钢纤维使UHPC试件由脆性破坏变为延性破坏,且开裂和极限扭矩均有明显提升,最大提升幅度分别为45.6%和100.6%;当体积掺量不变时,钢纤维类型对无配筋UHPC梁开裂扭矩和扭率影响较小,但对极限扭矩和扭率以及裂缝分布有较大影响;掺端钩纤维试件和掺长圆直纤维试件的抗扭承载力和延性均优于掺短圆直纤维试件;掺钢纤维UHPC梁在纯扭作用下的主拉和主压应变显著高于未掺试件,表明钢纤维可以有效“桥联”UHPC基体;试件的抗扭承载力试验值和计算值比值的平均值为0.93,标准差为0.09,说明提出的抗扭承载...  相似文献   

8.
通过水泥混凝土试件的冻融循环试验,研究了聚丙烯纤维掺量和引气剂掺量对冻融作用后混凝土基本力学性能的影响,探讨了聚丙烯纤维和引气剂对混凝土抗冻性能的作用机理,为改善水泥混凝土路面的抗冻融耐久性能提供了资料。  相似文献   

9.
箱梁C55高性能混凝土的抗裂性能研究   总被引:1,自引:1,他引:0  
针对鄂东长江公路大桥预应力混凝土宽箱梁,通过水化热、绝热温升、平板开裂、干燥收缩、温度~应力开裂等试验方法,研究箱梁C55高性能混凝土的早期抗裂性能.试验结果表明,采用适量粉煤灰或粉煤灰与矿粉复掺,可以改善箱梁C55高性能混凝土的抗裂性能,掺入聚丙烯纤维可进一步提高其抗裂性能.箱梁采用粉煤灰高性能混凝土,未发现有害裂缝,外观良好.  相似文献   

10.
结合DIC技术对预埋螺栓式钢纤维混凝土试件展开直接拉伸试验,研究了钢纤维体积掺量、钢纤维长度和钢纤维类型对钢纤维混凝土开裂模式、抗拉强度、峰值应变以及裂后延性的耦合影响规律。研究结果表明:钢纤维混凝土在直接拉伸过程中的开裂声响、裂缝形态及裂缝数目等特性受钢纤维掺量影响显著;掺入钢纤维后混凝土的抗拉强度、峰值应变及裂后延性均有不同程度增加;相较于铣削型钢纤维浇筑时易出现重叠和成团现象,端钩型钢纤维更易浇筑均匀及密实,与混凝土基体间形成更加紧密的黏结,拉伸后期端部弯钩的变形抵抗力提升了桥联作用,端钩型钢纤维对抗拉强度和裂后延性的提升表现较优越。结合DIC结果进一步揭示了钢纤维混凝土直接拉伸作用下的细观破坏机理,钢纤维混凝土拉伸破坏可以分解为4个阶段:Ⅰ弹性阶段、Ⅱ细观裂缝稳定扩展阶段、Ⅲ裂缝失稳扩展阶段、Ⅳ纤维拔出阶段。根据试验结果建立了综合考虑混凝土基体特性、钢纤维体积掺量、钢纤维长度及钢纤维类型影响的钢纤维混凝土应力-应变模型,在此基础上,引入拉伸损伤因子综合考虑抗拉强度、峰值应变以及裂后延性对钢纤维混凝土损伤发展特性的影响。  相似文献   

11.
汪首元  闫金萍  李昊  王家栋 《公路》2023,(5):295-300
针对西北干旱地区混凝土外养护效果不佳,且养护试件极易开裂、耐久性较差的现状。采用自制高吸水树脂(SAP)作为内养护材料,通过核磁共振分析测试了不同掺量的SAP对混凝土孔结构的影响,并基于抗裂圆环试验评价不同掺量的SAP对混凝土试件抗裂性能的影响,此外通过抗冻性能试验和抗氯离子渗透试验探讨了不同掺量的SAP对混凝土试件耐久性能的影响。结果表明:掺加适量的SAP会使得混凝土内部的凝胶孔隙和毛细孔增多;掺加SAP并在内养护条件下可有效改善混凝土试件的耐久性能;SAP掺量越多,混凝土开裂现象改善效果越显著,抗氯离子渗透性能越强;抗冻性指标不同,SAP最佳掺量不同。  相似文献   

12.
微表处稀浆混合料抗裂性能的研究   总被引:3,自引:1,他引:2  
采用抗折试验、摆锤式冲击试验以及动态抗开裂性试验研究了胶粉、聚丙烯纤维对微表处稀浆混合料抗裂性能的影响.结果表明:随着胶粉掺量的增大,混合料的抗折强度和抗冲击强度先增大后减小;随着纤维掺量的增大,混合料的抗折强度和抗冲击强度逐渐增大;动态开裂试验显示混合料的裂缝最大宽度和裂缝数量均随胶粉和纤维掺量的增加而降低;胶粉和纤维混掺比单一掺加胶粉或纤维对混合料抗裂性能的改善效果更显著.  相似文献   

13.
为得到阻裂增韧性能优异的玄武岩纤维桥梁混凝土,在配合比设计时,基于灰靶决策优化理论对玄武岩纤维混凝土进行力学与抗裂性能的初步材性优选,同时通过平板抗裂、干燥收缩、三点弯曲韧性试验研究玄武岩纤维在混凝土塑性阶段、养生期内的阻裂抑缩及后期承荷时的增韧作用规律,综合分析得出在混凝土中阻裂增韧性能最优的玄武岩长度、掺量.试验结果表明:玄武岩纤维能有效延缓塑性裂缝开展时间、降低裂缝面积,对降低失水收缩和改善脆性开裂也极为有利,长度为12 mm、掺量为0.06%的玄武岩纤维混凝土阻裂增韧性能综合最优.  相似文献   

14.
磷酸镁水泥混凝土可应用于桥梁抢建工程中的受弯构件,为研究钢纤维磷酸镁水泥混凝土梁的受弯性能,对5片不同钢纤维掺量(0%、0.5%、1.0%、1.5%和2.0%)的磷酸镁水泥混凝土梁进行了四点弯曲加载试验,分析了钢纤维掺量对磷酸镁水泥混凝土梁破坏形态、裂缝分布、受弯承载力以及延性等受弯性能的影响。试验结果表明:试验梁的破坏模式均为典型的弯曲破坏;在同等荷载作用下,掺有钢纤维的试验梁裂缝数量更多,但裂缝宽度更小且分布更加密集,改善了梁体开裂状况;随着钢纤维掺量的增加,试验梁的开裂荷载、屈服荷载和峰值荷载以及延性系数均得到提高,其中延性系数的提高尤为显著。基于ABAQUS有限元分析,与试验结果进行对比,并以钢纤维掺量和纵筋配筋率为参数进行了有限元参数化分析,结果表明:纵筋配筋率增加可以显著提高磷酸镁水泥混凝土梁受弯承载力,但会降低梁的延性,而提高钢纤维掺量则能显著改善梁的延性。最后,通过探究钢纤维在混凝土中的作用机理,提出了钢纤维在载荷方向上贡献的抗拉强度,建立了钢纤维磷酸镁水泥混凝土梁的受弯承载力计算公式,且计算结果与试验结果吻合良好。  相似文献   

15.
路面纤维混凝土韧性试验研究   总被引:1,自引:0,他引:1  
为获取纤维混凝土的荷载-挠度曲线,研究纤维对纤维混凝土韧度的影响,配制8组混杂纤维混凝土试件进行韧度试验,利用独立于试验机的数据采集装置获取试件的荷载-挠度曲线,分析不同纤维种类和掺量对纤维混凝土韧度指数的影响,并研究了韧度指数同弯拉强度的关系。结果表明:钢纤维对弯拉强度的贡献较大;铣削型钢纤维与仿钢丝聚丙烯纤维的组合对韧度的贡献最大,针状钢纤维混凝土的韧度随着纤维掺量的增加而增大;韧度指数随着纤维体积率和纤维根数的增加而增加;韧度指数高的试件弯拉强度不一定大,弯拉强度为6.7MPa对应着韧度指数的最低值。  相似文献   

16.
针对不同聚丙烯纤维掺入量下的混凝土拉伸、弯曲等力学性能进行了试验研究,并从路面工程实际出发,针对聚丙烯纤维碾压混凝土在现场搅拌中的质量控制进行了分析。研究结果表明:随着聚丙烯纤维掺量的增加,混凝土的抗压强度提高并不明显,初裂挠度和抗弯强度提升显著,掺入了聚丙烯纤维的混凝土有效的提高了混凝土的抗拉强度与峰值应变,有效的抑制微裂缝的扩展,保证试件在裂缝失稳前可以有较大的变形量提高了素混凝土的初裂性能和结构的抗拉强度。工程应用中,为保证聚丙烯纤维的掺入均匀性,可采用间歇式的搅拌方式,控制混合料的拌合时间在120~150 s范围内,保证混凝土拌合站掺量大于50 m3/h,水泥罐内温度小于50℃,以便获得符合质量标准的聚丙烯纤维碾压混凝土。  相似文献   

17.
在橡胶混凝土中,掺入聚丙稀纤维,以提高其韧性。结合室内试验对聚丙烯纤维增强橡胶混凝土的抗弯拉、抗压和抗冲击性能进行了测试分析,并对增韧机理进行了微观分析。结果表明:随着聚丙烯纤维的加入,弯拉强度、弯曲韧性和抗压强度均呈现先增大后减小的趋势,当纤维掺量为08 %时达到峰值,破坏模式发生变化;抗冲击性能随着纤维掺量的增大而快速提高;在水泥基体中掺入橡胶粉后相当于引入大量低弹性模量的惰性物质,导致水泥基体初裂强度和断裂韧度的降低,从而有利于纤维桥联作用的发挥和多缝开裂的实现;综合考虑聚丙烯纤维的合理掺量不宜超  相似文献   

18.
为了研究道面改性聚酯纤维混凝土早期抗裂性能,提出了道面合成纤维混凝土早期抗裂性能的试验方法,进行了改性聚酯纤维的规格、掺量和搅拌时间等阻裂性的试验.纤维规格对裂缝面积影响最大,纤维掺量对裂缝影响次之.在试验结果的基础上,确定了某机场道面改性聚酯纤维混凝土的配合比,成功地解决了该机场道面混凝土早期裂缝问题.  相似文献   

19.
《公路》2020,(6)
随着我国技术、经济的迅猛发展,基础设施建设中不断引用"新技术、新工艺、新材料、新设备"等4新技术,不断解决施工过程中存在的问题。为避免混凝土产生有害裂缝,增加混凝土的耐久性与耐候性,特在混凝土中掺拌玄武岩纤维,以此减少裂缝的产生。文中通过试验研究了纤维掺量对混凝土试件的抗压强度和抗劈拉强度的影响。结果表明,玄武岩纤维可显著提升试件的抗压强度和抗劈拉强度。随着纤维掺量的增加,抗压强度呈现出先增加后减少的趋势,纤维掺量为0.4%时,其28d抗压强度达到96.25MPa,相比素混凝土性能提升34.37%;抗劈拉强度因玄武岩纤维的桥接作用,纤维掺量为0.4%时,性能相较基准混凝土提升29.34%。该种纤维混凝土可解决需要保证路基路面不易开裂的施工问题。  相似文献   

20.
为提高三合料基层的抗裂性能,在三合料基层中加入不同掺量聚丙烯纤维,先通过弯拉试验确定聚丙烯纤维最优掺量;然后对掺加聚丙烯纤维的三合料进行抗压试验、劈裂试验,并与未掺加聚丙烯纤维的三合料进行对比,结果表明,添加0.2%聚丙烯纤维可显著提升三合料的抗拉能力及劈裂性能,提高其抗裂能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号