首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
简述了地铁列车客室空气压力波动对乘客舒适性的影响。从理论上对列车客室空气压力波动进行了分析,并给出了提升列车气密性和优化列车造型来抑制车内压力波动的措施。通过上述措施对东莞轨道交通2号线列车进行了优化。在东莞轨道交通2号线正线进行的列车客室空气压力波测试结果表明,客室空气压力波动控制效果良好。  相似文献   

2.
基于TCMS(列车控制与管理系统)改进、优化的设计思路,对TCMS与牵引、制动系统的控制方式,以及TCMS与PIS(乘客信息系统)间的功能融合进行了研究,提出了一种列车集成化水平较高且控制更优的TCMS方案.该方案基于线路坡度信息实时采集,改进了列车起动过程;通过优化制动力分配策略,改善了列车的制动执行及响应;通过TCMS与PIS部分功能的融合,提高了列车的集成化程度.  相似文献   

3.
高速列车在隧道内运行时,车外的压力变动会引起列车车内压力的变动,从而带来乘客感觉舒适性问题。为解决这一问题需要采取压力保护等措施,而计算列车车内压力波动是必不可少的基础性工作。利用流入流出单节密封车厢的流量关系,以连续换气方式和截止阀方式为例,模拟了列车在安装这两种装置时隧道单车压力波与会车压力波条件下的车内压力波动规律,验证了计算方法在计算车内压力方面的有效性。  相似文献   

4.
地铁车辆通过隧道时引起的车内外压力波动会对司乘人员造成不适感或危害。文章通过线路试验方法研究了地铁车辆通过隧道时车外压力和车内压力的波动特性,分析隧道截面及车速变化对车内外压力的影响。试验结果表明:隧道截面变化会导致车内压力与车外压力的波动,且车辆通过通风井时会产生明显的压力波动;司机室头车两侧侧窗车外压力变化趋势相同,司机室车内压力幅值大于客室压力幅值;列车分别以80 km/h与90 km/h运行时,90 km/h速度下的车外压力幅值与车内压力幅值均大于80 km/h相对应的数值,且均发生在列车进入隧道时,隧道截面变化时与通过通风井时。  相似文献   

5.
基于伊朗3个城市地铁车辆项目,介绍Mitrac~? TCMS列车网络控制系统。结合项目车辆的特点,介绍Mitrac~? TCMS系统的拓扑结构和主要设备及其功能。同时,简述Mitrac~? TCMS系统在该项目上主要实现的列车控制功能、牵引控制功能、高压检测控制功能、列车操作与控制功能、制动控制功能以及故障诊断功能。  相似文献   

6.
CRH2型200km/h动车组车内压力波动控制研究   总被引:2,自引:0,他引:2  
从车内压力波动及耳鸣产生的机理等方面分析动车组车内压力波动的原因,对车内压力波动控制方法进行研究,提出主动式和被动式2种空气压力波动控制方法,并进行了对比分析,提出CRH2动车组车内压力波动控制研究方向.  相似文献   

7.
随着社会经济发展,地铁车辆已成为我国现代交通的重要基础设施。热释放速率是轨道交通车辆防火设计、火灾安全评估和隧道通风系统设计的重要参数,然而现有地铁列车火灾燃烧特性的研究结果并不能反映出车内主要部件对火灾热释放速率的影响。为了有效地对地铁列车结构和防火设计提供指导,基于系列化中国标准地铁列车实际结构,根据材料燃烧试验测试得到的车内非金属可燃材料的燃烧特性参数,建立车辆火灾的数值计算模型,通过数值计算方法模拟采用不同燃烧特性材料时的车内火灾蔓延过程,对比分析顶板、侧墙、座椅和地板4种车内主要部件对车辆火灾热释放速率的影响。研究表明,地铁车厢内主要部件对热释放速率的影响程度与火灾蔓延顺序、部件空间位置有关,影响程度由大到小依次为顶板、侧墙、座椅、地板。  相似文献   

8.
高速列车过隧道时,会形成交变压力进而导致车厢内压力波动加剧,对旅客耳部舒适性产生严重影响。研究人员为了减缓车内压力波动,往往需要通过大量的实车试验获取车内压力变化规律,以确定列车过隧道时空调压力阀的开闭条件,但同时也导致了试验成本的急剧增加。因此,本研究旨在定量化建立各关键设计参数与车内压力波动幅值之间的联系,以节约相应的试验成本。首先,基于三维、非定常、可压缩的RANS方程与k-ε两方程湍流模型,采用数值计算方法揭示列车运行速度与隧道长度对车外压力波动的影响机制,并基于动模型试验验证了数值计算的可靠性。同时建立基于车体气密性指数的车内外压力理论转换计算方法,并基于实车试验验证了这一转换方法的准确性。最终,结合响应面法,提出以车内压力3 s变化率为响应值,以列车运行速度、隧道阻塞比和长度为设计变量的参数代理模型。基于这一模型,车辆技术人员通过输入列车速度、隧道阻塞比和长度等设计变量,即可得到车内压力变化幅值,为确定列车通过隧道时空调压力阀的开闭条件提供参考,从而节约试验成本。  相似文献   

9.
任远 《铁道运营技术》2015,21(1):43-44,47
提出一种供轨道交通信号控制系统使用的列车测速测距接口设备,旨在能与列车、轨旁的测速和定位的各种设备接口,获取列车速度信息和位置信息,为轨道交通信号车载控制系统的自动运行控制提供必要的输入。  相似文献   

10.
随着列车运行速度的提高,旅客对列车的要求不再局限于经济、快捷,同时对列车舒适性和平稳性提出了新的需求。论文设计出一种列车平稳性实时在线监测系统,该监测系统根据GB/T 5599-1985平稳性计算方法,利用三向加速度传感器采集列车车体横向、垂向和纵向振动加速度信号,以STM32为核心处理器,完成平稳性相关计算和分析,得出平稳性值及报警信息,并将报警信息通过多功能车辆总线(MVB,Multifunction Vehicle Bus)上传到列车控制监控系统(TCMS,Train Control Monitor System)。此外,对监测过程中原始数据和特征数据进行存储,方便后期维护。通过实车测试,将监测系统得出的平稳性指标和计算机得出的平稳性指标进行对比分析,验证本系统的正确性。  相似文献   

11.
地铁高速通过隧道中间风井,列车车体内外都会产生较强的压力波动,严重时会影响司乘人员舒适性.采用数值计算方法对地铁列车变速通过中间风井的气动效应进行数值模拟,研究不同参数对车体表面压力分布规律,并以车内压力变化率和3 s内压力变化评价标准评估车内乘客舒适性.研究结果表明:距离中间风井100 m处变速车体表面测点压力峰峰值均大于变速位置为200 m和300 m时对应的测点压力峰峰值,分别大4.68%和6.46%.将车速120 km/h降为100 km/h,变速位置为300 m时分别比变速位置为100 m和200 m时车内压力变化少10.72%和5.07%.列车在中间风井前200 m以上减速至100 km/h以下,能明显缓解通过风井时车内压力变化,满足车内乘员舒适性要求.  相似文献   

12.
制动系统是城轨车辆关键系统之一,根据故障导向安全原则,制动系统失效时应有充足的措施确保列车和人员安全。北京地铁四号线车辆的制动控制系统通过G阀和RIO阀,完成列车的保持制动、常用制动、紧急制动、防滑保护等功能,并且将列车制动控制系统接入到TCMS系统中,保证了车辆的安全运营。  相似文献   

13.
开发了一种车载无线压力测试系统,对和谐号CRH380动车组的车内空气压力进行长期跟踪,系统地分析了该动车组在明线、隧道、会车等不同运营线路状态下的空气压力变化情况.结果 表明,动车组列车通过明线时,车内各测点压力波动特征值变化趋势基本一致,且车内压力波动与运营里程、镟修周期关系不大;动车组列车以相同运行速度通过不同长度...  相似文献   

14.
在轨道交通车辆中,列车控制与监视系统(TCMS)正在承担更多的安全功能,其中功能安全通信是整车控制功能的重要环节。依据国内外功能安全通信的相关标准,以当前广泛采用的MVB总线为例,对列车控制与监视系统的通信安全风险进行剖析,针对功能安全通信协议采用的防范措施,分析其所达到的功能安全效果,并提出为达到更高安全等级目标可采取安全措施的建议。  相似文献   

15.
基于地铁车辆列车通信控制系统TCMS和列车自动控制系统ATC的控制逻辑和算法,分析深圳蛇口线地铁列车倒溜紧急制动故障原因,并提出改进措施。  相似文献   

16.
计算高速列车车内压力的热力学模型   总被引:2,自引:0,他引:2  
张光鹏  雷波 《铁道学报》2006,28(1):35-38
运用热力学基础知识,建立了一种计算高速列车通过隧道时车内压力变化的热力学模型,它采用当量漏气面积表示车辆气密性,具有物理意义明确的特点。在相同的计算条件下,将其与现有能够计算车内压力的2种模型——经验模型和流动模型进行了车内压力计算的对比分析,结果表明热力学模型用于高速列车车内压力计算是可行的。  相似文献   

17.
列车驶入隧道时会产生剧烈的压力波动,对车内人员的耳感舒适性有重要影响。在高海拔、大坡度环境下,车内外压力变化还要叠加海拔变化的影响,车内人员的耳感不适性问题将更加复杂。文章采用一维可压缩非定常不等熵流动模型黎曼变量特征线法和考虑连续换气风机工作的车内压力计算方法,分别在隧道单列车通过和中央等速交会情景下进行了车内外压力变化特征研究,并基于国内高速列车主动压力保护技术,对比了采用高静压风机和低静压风机的车内压力保护效果,最后结合UIC标准和国内民航舒适性标准限值进行了车内压力舒适性评价。研究表明,高静压风机对车内压力瞬变的抑制作用明显优于低静压风机,低静压风机车内每1 s、3 s和10 s内最大压力变化量分别高于高静压风机约100%~600%,且350 km/h速度等级列车的高静压风机对车内压力抑制作用略优于250 km/h速度等级列车。  相似文献   

18.
为探明80 km/h B型地铁列车在隧道内运行时空气动力学效应,采用实车试验方法,在南宁某隧道直径为5.4 m的全地下线路开展空气动力学测试,分析列车在隧道内运行时,车内外气压波动情况以及车内耳压舒适度情况。研究结果表明:列车以80 km/h速度通过隧道内中间风井位置时,车内外压力波动剧烈,车外与车内测点峰峰值分别为1 452 Pa与923.4 Pa;列车在车内外压力波动剧烈时,车外各测点压力差异大,车内各测点压力差异小,车外各测点峰峰值的均方差值为车内各测点峰峰值的均方差值的9.6倍;列车在非风井区间运行时耳压舒适度良好,而在风井区间运行时有造成乘客耳压不舒适的风险。研究结果可为80 km/h速度等级地铁列车耳压舒适度的评估和改善提供参考。  相似文献   

19.
智能化控制、节能、舒适性已经成为轨道车辆空调系统的发展方向。北京地铁大兴机场线被誉为“北京市轨道交通建设新里程碑”,该线路采用世界最高等级、具有完全自主知识产权的全自动驾驶系统,不仅可实现无人驾驶,还可实现列车自动唤醒、自检、运行、休眠等全过程。文章介绍了北京新机场线轨道车辆所使用的智能型变频空调系统方案。该方案集成变频空调系统达成对客室内的精确温控,降低温度波动;采用压力波保护装置隔绝车外的气压波动,有效避免乘客出现耳部不适感,提升乘客乘车体验;配置低温等离子空气净化装置,利用低温等离子体对送入车内的空气进行杀菌、消毒,并去除其中异味,进一步实现了客室内部舒适性的提升。同时,压缩机的变频控制精确匹配车内热负荷的变化,并对电能高效利用,降低了空调系统的运营能耗以及成本。  相似文献   

20.
高速列车通过隧道时产生较大压力波动,瞬态压力变化的同时由车外向车内传递,车内外压力波动对车体形成剧烈的气动载荷,将影响车体使用寿命。同时,不同时间间隔内车内压力变化率同司乘人员的乘坐舒适度密切相关,探讨不同时间间隔标准下高速列车通过不同长度隧道时车辆自身的动态时间常数值具有重要意义。基于国内单双线隧道基础参数和CR400BF型动车组相关技术参数,应用一维可压缩不等熵流动模型的广义黎曼变量特征线方法计算列车通过隧道过程中车内外压力波动随时间历程特性,归纳车内外最大正压值、最大负压值、车外压力峰峰值和车内外同时刻压差最大值的变化规律。按照中国、德国、ERRI、UIC不同标准舒适度标准要求计算列车所需达到的时间常数气密阈值,比较4种标准下时间常数气密阈值随隧道长度增加的变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号