首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为解决桥梁装配式施工中传统混凝土盖梁自重过大、整体吊装困难的难题,提出全预制轻型部分预应力超高性能混凝土(Ultra-high-performance Concrete,UHPC)薄壁盖梁的设计方案。为研究UHPC薄壁盖梁的斜截面抗裂性能及抗剪承载力,完成1根相似比1:2的大比例UHPC薄壁盖梁共2次模型试验,获得模型从加载到破坏全过程的开裂和破坏荷载、裂缝和变形分布规律等关键试验结果;分析梁体应变、预应力、裂缝的分布规律,考虑UHPC的应变硬化特征,基于材料力学公式提出斜截面开裂剪力的理论计算方法,考虑UHPC结构裂缝分布和结构形状系数等,提出斜裂缝宽度的计算公式。按照不同规范对UHPC盖梁抗剪承载力进行计算对比,以法国UHPC规范为基础,对比分析UHPC基体、箍筋、钢纤维及纵筋销栓作用对结构抗剪承载能力的影响程度。研究结果表明:计算结果与模型的开裂剪力以及裂缝宽度吻合良好;各国规范均低估了UHPC结构的抗剪承载能力;提出的UHPC盖梁具有自重轻、施工快捷等特点,充分利用了UHPC的超高抗拉性能和应变硬化特征,具有优异的斜截面抗裂性能以及抗剪性能;建议取消弯起钢筋、适当增加预应力筋,浇筑UHPC时应增设抗浮措施等。研究成果可为UHPC盖梁的应用提供参考。  相似文献   

2.
《中外公路》2021,41(4):215-220
为了更准确分析预制拼装盖梁干接缝截面的抗剪性能,以城市高架桥倒T形盖梁为对象建立分析模型,探讨了压应力、剪力键宽度与数量等因素对干接缝截面抗剪承载力的影响规律;基于此建立了抗剪承载力计算公式,并进行了数值验证与对比分析。结果表明:剪力键的抗剪承载力随着压应力增大而提高,且与剪力键宽度成正比关系,而剪力键数量的增加会导致剪力键受力不均匀;当剪力键发生破坏时,需考虑平接触面的分离效应;该文推导的计算公式可以较合理地反映各主要因素对接缝截面抗剪承载力的影响规律,更适用于跨高比较小的倒T形预制拼装盖梁。  相似文献   

3.
采用横向分段干接缝连接的预制拼装盖梁具有施工速度快、对交通影响小、施工质量易控等优点,但由于存在接缝剪力键,其受力情况复杂。为了更准确分析预制拼装盖梁的受力特性,以城市高架桥倒T形盖梁为对象建立精细化分析模型,探讨剪力键对预制拼装盖梁受力特性的影响;并研究剪力键数量、高深比对盖梁受力特性的影响规律。研究结果表明:设置剪力键会增大接缝区域最大主应力、改变盖梁的极限状态并减小接缝截面的竖向相对滑移;另外,剪力键设置数量及高深比对接缝区域的应力分布也有较大影响,在设计时应进行参数敏感性分析,合理布置剪力键以获得恰当的传力路径。  相似文献   

4.
为探究钢-UHPC组合结构与普通钢-混组合结构中PBL剪力键力学性能的差异性,通过推出试验和有限元分析相结合的方法对其展开详细研究。首先,对9个UHPC试件和9个普通混凝土试件进行推出试验,根据2种混凝土试件中PBL剪力键的破坏形态、荷载-滑移曲线及应变分布规律揭示其失效机制及力学性能的差异,分析贯穿钢筋直径和钢板开孔数对PBL剪力键力学性能的影响;然后,采用试验结果验证的有限元模型开展参数分析,详细探讨UHPC强度、钢板开孔孔径、贯穿钢筋屈服强度和钢板厚度对PBL剪力键极限抗剪承载力的影响;最后,基于试验和有限元分析结果,提出考虑钢纤维的PBL剪力键极限抗剪承载力计算公式。结果表明:受钢纤维的影响,UHPC的裂缝发展受到限制,且较普通混凝土裂缝数量少、宽度小;UHPC试件中贯穿钢筋发生明显屈服,以剪切破坏为主;单孔PBL剪力键的极限抗剪承载力主要取决于贯穿钢筋直径,而受混凝土强度影响较小;多孔PBL剪力键的极限抗剪承载力主要取决于贯穿钢筋直径和混凝土强度;与普通混凝土试件相比,UHPC试件的抗剪刚度提升了2~3倍,双孔剪力键极限抗剪承载力约提高41%,三孔约提高56%;钢板开孔孔径、贯穿钢筋屈服强度和钢板厚度均是影响PBL剪力键抗剪承载力的因素;提出的PBL剪力键极限抗剪承载力计算公式计算结果与试验结果吻合度高。  相似文献   

5.
为了研究UHPC永久模板RC无腹筋组合梁的抗剪性能,以UHPC永久模板的厚度和界面条件为试验参数,分别开展了UHPC材料力学性能与UHPC永久模板RC无腹筋组合梁四点加载试验。由于组合梁的抗剪性能与UHPC的基本力学性能密切相关,因此首先对UHPC的抗拉与抗压性能进行了试验研究。UHPC的力学性能试验结果表明,UHPC在单轴单调荷载作用下具有一定程度的应变硬化特征,其拉伸极限强度为4.87 MPa,极限拉应变为0.6%。在材料试验结果的基础上,通过考虑UHPC永久模板厚度与界面方式这2种试验参数,分别设计了1根RC参照梁,1根UHPC参照梁,以及2种UHPC/RC界面类型(光滑与均布剪力键)、3种永久模板厚度(15,20,25 mm)、共计6根U形UHPC永久模板RC无腹筋组合梁。在对这8根梁分别进行四点加载破坏试验的基础上,分析了UHPC永久模板不同厚度与界面类型对组合梁抗剪承载力的影响。结果表明:组合梁的抗剪承载力及其变形能力较相同尺寸及配筋的RC无腹筋梁至少提高了103.7%和117.7%;且无论何种界面类型下,抗剪承载力随着UHPC永久模板厚度的增加而增加;界面为均布剪力键的UHPC永久模板较光滑界面能提供更高的抗剪承载力与变形能力。最终,基于修正桁架模型理论,分析了UHPC永久模板与RC无腹筋梁的抗剪承载力及其抗剪构成,提出了UHPC永久模板RC无腹筋组合梁的抗剪承载力计算公式,且公式计算值与试验值吻合较好。  相似文献   

6.
曾勃  曾国良 《中外公路》2021,41(5):104-109
为研究后张法预应力UHPC局部增强混凝土梁的受弯性能,进行了1根预应力混凝土梁及2根不同UHPC厚度的预应力UHPC局部增强混凝土梁受弯性能试验,探讨了UHPC局部增强层厚度对预应力试件受力过程、破坏形态、裂缝开展以及承载特性等的影响.结果 表明:相对于传统的预应力混凝土梁,在UHPC局部替代受拉区普通混凝土后,可有效抑制受拉区裂缝发展,使原本宽而少的裂缝转变为细而密的微裂缝,且随着UHPC层厚度越大,受拉区主裂缝宽度逐渐越小,裂缝分布更密;增加UHPC厚度可显著提高试验梁的极限弯矩,UHPC层由0 mm分别增加到50 mm和100 mm,相应的极限承载力可分别提高约1.14倍和1.35倍.建立了预应力UHPC局部增强混凝土梁开裂弯矩和极限弯矩的计算公式,计算值与试验值吻合较好.  相似文献   

7.
为研究UHPC梁的斜截面抗裂性能并提出合理的评价指标和设计建议,以期能充分利用UHPC超高的抗拉性能及优秀的裂缝控制能力,设计了5片预应力UHPC-T形梁,并完成其静力加载模型试验,试验参数为剪跨比、箍筋和钢纤维含量,获得了开裂荷载、裂缝分布和应变等关键试验结果。试验结果表明:当剪跨比增加时,开裂荷载会减小,斜裂缝宽度的发展速度却加快;箍筋对开裂荷载影响较小,但能抑制斜裂缝的发展;钢纤维含量的增加会提高开裂荷载和减缓斜裂缝的发展速度。根据材料力学公式推导出斜截面开裂剪力计算公式,进一步采用极限平衡法建立正常使用阶段斜裂缝宽度的计算方法,计算值与试验值吻合良好且偏于安全。通过计算实测开裂剪力作用下斜截面的主拉应力可知:开裂时斜截面的主拉应力会超过UHPC的抗拉强度,不仅体现了UHPC的应变硬化特性,还反映了UHPC梁良好的斜截面抗裂性能。对比各国规范的斜截面抗裂设计规定,中国规范建议稿的容许应力值较为保守。基于开裂时的主拉应力水平和各国规范规定,建议放宽整体预应力UHPC梁的主拉应力限值,取为60%的弹性极限抗拉强度并考虑纤维分布的不均匀性。对于允许开裂的UHPC梁,应验算正常使用阶段的...  相似文献   

8.
针对节段预制桥梁胶接缝设计普遍采用剪力键作为连接形式,制作3组共计16个匹配预制的胶接缝剪力键试件,考虑剪力键键齿齿目、键齿配筋形式以及是否配有体内束3种因素,进行直剪试验研究,以得到这些因素对胶接缝的开裂荷载、极限荷载、变形、裂缝开展模式以及最终的破坏模式的影响规律。研究结果表明:与素混凝土键齿胶接缝相比,三键齿配筋的胶接缝剪力键抗剪承载力平均提高4.52%,双键齿配筋胶接缝剪力键抗剪承载力平均提高8.73%,而布置体内束的胶接缝剪力键的抗剪承载能力提高率能达到18.6%,远大于键齿配筋;剪力键键齿配筋和布置体内束可以明显提高剪力键破坏时的延性,降低开裂荷载与极限荷载的比值,改变开裂形式;键齿处配筋使得剪力键的破坏形式从原来的素混凝土键齿根部脆性破坏变为键齿配筋处的保护层脱落破坏;布置体内束,键齿中的裂缝增多,尤其是斜裂缝发展更加充分和密集。为了方便预测胶接缝剪力键的抗剪承载能力,根据胶接缝的传力机理,依据莫尔-库仑摩擦破坏准则,并结合AASHTO规范与Buyukozturk的试验研究成果,提出了预测胶接缝配筋剪力键直剪承载力的抗剪承载力计算公式,同时将分析结果与试验结果进行对比,吻合良好。  相似文献   

9.
采用预制超高性能混凝土(Ultra-high Performance Concrete,UHPC)永久模壳增强普通混凝土(Reinforced Concrete,RC)桥墩,可提高其抗震能力和耐久性能,同时加快桥梁施工速度。为研究预制UHPC永久模壳对桥墩抗震性能的影响,提出了预制模壳的设计方法,分析了其对桥墩的主动增强及被动约束机理;通过参数敏感性分析,研究了UHPC永久模壳关键参数对桥墩抗震性能的影响,包括UHPC抗压和抗拉强度等材料性能参数及模壳高度和厚度等几何参数。研究结果表明:永久模壳设计厚度由UHPC抗拉强度及桥墩截面尺寸控制,核心区混凝土浇筑温度及速度对其有一定影响,浇筑温度与模壳设计厚度呈逆相关,当浇筑温度从0℃上升到30℃时,模壳厚度约减小43%,而浇筑速度与模壳厚度呈正相关,当浇筑速度从0.5 m·h-1增加到4 m·h-1时,模壳厚度约增加30%;预制模壳的主动增强和被动约束作用可提高RC桥墩最大承载力和耗能能力15%以上,残余变形可减小17%以上;UHPC抗压和抗拉强度对新型桥墩初始刚度、最大承载力、耗能能力等性能指标影响较小,变化量均低于6%,提高UHPC抗压强度可有效降低新型桥墩的残余变形;预制UHPC模壳厚度和高度等几何参数主要影响新型桥墩的初始刚度和残余变形,对其耗能能力和最大承载力无显著影响;研究成果可为预制UHPC永久模壳增强混凝土桥墩的设计及抗震分析提供参考依据。  相似文献   

10.
基于超高性能混凝土(UHPC)的优异性能及其在混凝土结构抗弯加固中的应用成果,提出了采用配筋UHPC加固受损混凝土斜拉桥主梁的方法,由此开展了UHPC加固受损严重主梁的混凝土斜拉桥节段模型试验研究,以探究主梁加固后斜拉桥体系的受力性能。试验结果表明:UHPC加固混凝土斜拉桥主梁施工方式整体协同工作性能良好,UHPC层与原混凝土间未发生脱黏破坏;UHPC加固后,主梁开裂荷载较原未损伤主梁提升了79.9%,且UHPC层裂缝呈现数量多、间隙小及宽度细的特征,并可有效抑制原主梁裂缝发展,说明受拉UHPC层显著提高了加固后主梁的抗裂性能;不同主梁裂缝宽度工况荷载作用下,斜拉桥体系变形恢复较好,残余变形很小,且当主梁出现严重损伤时,该体系仍具有很好的受力性能;UHPC加固后,主梁的抗弯强度有一定程度提高,但不控制斜拉桥体系的极限承载力,主梁破坏时斜拉索应力为其极限强度的70.2%,斜拉索仍然具有一定承载力富余;UHPC加固后,主梁严重受损的斜拉桥体系刚度得到有效提升,主梁开裂前体系刚度较未损伤原主梁及灌浆加固后主梁分别提升了11.3%和29.5%;采用UHPC对混凝土斜拉桥主梁进行抗弯加固具有较大...  相似文献   

11.
相比现浇混凝土桥面板,全预制混凝土桥面板有诸多优势,能够提高桥梁工程质量、加快桥梁施工速度和降低成本。预制超高性能混凝土(Ultra-high Performance Concrete,UHPC)梁和预制UHPC桥面板通过槽口连接形成组合梁是一种新的结构形式,这种槽口式连接的界面抗剪性能会影响全梁整体承载力。通过16个推出试件,研究不同界面抗剪钢筋配筋率、预制梁混凝土类型和预制桥面板混凝土类型、槽口填充混凝土类型对界面抗剪承载力的影响,在试验过程中观测裂缝的发展和破坏模式,记录竖向滑移、水平滑移和试件破坏模式、钢筋应变、极限荷载Vu和残余荷载Vr。试验结果表明:界面抗剪钢筋配筋率对Vu和Vr起主要作用,配筋率为3.7%的界面极限荷载分别是配筋率为2.8%和2.0%的1.06倍、1.20倍;不同的槽内填充混凝土和预制梁混凝土二者共同影响Vu和Vr;预制桥面板混凝土类型对抗剪性能影响不大;钢筋的销栓作用主要受到钢筋直径和混凝土强度等级的影响;通过与AASHTO LRFD 2015和ACI 318规范对比发现,2个规范对UHPC组合梁槽口式连接界面抗剪承载力估计保守;提出的预制UHPC组合梁槽口式连接界面抗剪计算公式计算值与试验值吻合较好。  相似文献   

12.
为研究空心板桥新型粗骨料超高性能混凝土(UHPC)铰缝的抗剪性能,对14个铰缝试件进行了静力抗剪试验,试验参数包括铰缝混凝土材料类型、界面处理方式、抗剪钢筋构造形式、抗剪钢筋强度等级和配筋率。分析了试件的裂缝发展过程和分布规律、破坏模式以及各试验参数对铰缝抗剪性能的影响;同时,基于铰缝典型的荷载-位移曲线分析了铰缝的抗剪机理。试验结果表明:铰缝的裂缝宽度从下至上呈现逐渐减小的规律,由于传统配筋方式上部抗剪钢筋的位置靠近顶部,导致上部抗剪钢筋在铰缝抗剪承载力极限状态时尚未屈服,对抗剪承载力的贡献小。试件破坏模式分为2种:传统铰缝的界面剪切破坏;UHPC铰缝的预制混凝土块剪切破坏。UHPC材料、界面预留槽处理方式、抗剪钢筋新配筋方式以及提高抗剪钢筋的强度等级和配筋率,均能不同程度地提升铰缝的抗剪性能。与传统铰缝相比,新型粗骨料UHPC铰缝的开裂荷载、抗剪承载力和名义抗剪刚度提升幅度分别可达42.8%、185%和218.3%。当达到抗剪承载力极限状态时,UHPC铰缝主要依靠抗剪钢筋屈服提供的剪切摩擦抗力以及预制混凝土块剪断提供的剪切抗力来抵抗外荷载。提出了UHPC铰缝开裂荷载及抗剪承载力计算公式。计算结果表明:开裂荷载、抗剪承载力试验值与计算值比值的均值分别为1.47、1.19,变异系数分别为0.05、0.12,所提出的计算公式可以较精确和稳定地预测UHPC铰缝的开裂荷载及抗剪承载力。  相似文献   

13.
为了解决桥墩与承台的装配式连接问题,提出金属波纹管和超高性能灌浆料的预制拼装桥墩方案。首先考虑施工方式和加载方向参数的影响,以某地铁高架桥为工程原型设计4个试件,然后采用水平单向和双向拟静力试验方法,对比分析金属波纹管节段拼装桥墩和整体现浇桥墩抗震性能的差异,最后探讨双向压弯作用下的极限承载能力验算方法。试验结果表明:灌浆波纹管试件塑性铰区纵筋出现拉断而不是纵筋拔出,说明灌浆波纹管的钢筋连接方式可靠;灌浆波纹管连接节段拼装桥墩损伤过程、破坏模式与整体现浇桥墩总体上接近,主要抗震性能指标的差异较小,认为抗震性能与整体现浇试件的抗震性能接近,表明灌浆波纹管连接是一种可行的装配式桥墩与承台的连接方式;相对于单向加载试件,双向加载的钢筋混凝土试件RC,最大水平力下降11%,极限位移下降18%,双向加载的预制拼装试件最大水平力降低11%,极限水平位移降低15%,残余位移增大了20%,试件损伤程度更为严重,说明在水平双向荷载受力下,整体现浇试件和节段拼装试件有着明显的双向荷载耦合效应;双向压弯作用下截面的弯矩计算方法能够较准确地校核节段拼装墩的极限承载能力。研究成果可为节段拼装桥墩的抗震设计和抗震分析提供参考。  相似文献   

14.
采用预制桥面板和集簇式栓钉连接的装配式钢-混组合梁桥,可减少现浇工序,加快施工速度。文中为研究剪力槽孔间距及剪力钉数量对组合梁共同工作程度的影响,制作4片采用不同簇钉群连接参数的钢-混组合箱梁,进行抗弯弹塑性全过程加载试验,研究剪力连接度对组合梁结构受力性能的影响。结果表明,当组合梁剪力连接度由1降低到0.65时,组合梁受弯承载力减少17%;当组合梁剪力连接度大于1时,受弯承载力基本未增加,而结构延性有所下降。在界面滑移方面,随剪力连接度增大,界面滑移量则明显减少。在破坏模式方面,剪力连接度越大,预制混凝土板的纵向劈裂及局部压溃,可能成为破坏控制条件;反之,栓钉剪断及钢梁破坏易成为结构失效控制条件。  相似文献   

15.
为研究钢-UHPC华夫板组合梁在静载作用下的竖向抗剪性能,对4个组合梁试件进行了静力试验,主要变化参数包括华夫板平板厚度、肋的高度、翼板宽度。通过分析试件破坏过程、荷载-跨中挠度曲线、应变分布规律,对不同参数下试件的破坏模式和承载能力进行研究。研究结果表明:试件共有剪切破坏和剪切、弯曲复合破坏2种破坏模式;与普通组合梁不同的是,由于钢纤维的“桥接作用”,UHPC翼板剪切开裂后呈现多条剪切裂缝同时开展现象,主裂缝周围出现大量细而密的微小剪切斜裂缝,钢纤维显著提高了组合梁的抗剪承载力和变形能力;华夫板纵、横肋的设计削弱了组合梁的整体工作性能,在几何突变处出现应力集中现象,使得此处率先发生纵向开裂;对比试件SUW1和SUW2,保持华夫板整体高度不变,将肋高占华夫板高度比例从50%提高到67%时,承载力下降了3.2%,但变形能力提高了85.8%;对比试件SUW2和SUW3,保持平板厚度保持不变,将肋的高度从60 mm增加到90 mm时,承载力提高了22.5%,但变形能力下降了48.6%;对比试件SUW1和SUW4,将翼板宽度提高47.3%时,承载力和变形能力分别提高了19.0%和48.5%;提出综合考虑纵肋与钢纤维影响的钢-UHPC华夫板组合梁抗剪承载力计算公式,理论计算值与试验值吻合良好。  相似文献   

16.
预制节段干接缝体外预应力混凝土梁是一种适应于快速化施工的新型桥梁结构形式,然而预制节段干接缝体外预应力混凝土梁的斜截面抗剪破坏机理尚不明确。针对此类状况以文献[18]中推荐的箱型截面为原型,进行4根预制节段干接缝体外预应力混凝土梁和3根整体式体外预应力混凝土梁的1:8缩尺模型试验,揭示不同剪跨比(1.5,2.0和2.5)、接缝类型(整体式接缝和干接缝)以及接缝数量(2和4)对预制节段干接缝体外预应力混凝土梁斜截面抗剪性能的影响。在试验过程中观测裂缝的发展,记录体外束应力增量、挠度发展规律、接缝张开情况和破坏形态。试验结果表明:体外预应力预制节段干接缝混凝土梁在键齿处容易产生裂缝;剪跨比是影响节段梁和整体梁抗剪承载力的主要因素,随着剪跨比增大,节段梁和整体梁的抗剪承载力明显降低;在剪跨比小于或等于2.0时,预制节段干接缝体外预应力混凝土梁的抗剪承载力小于相应的整体式混凝土梁的抗剪承载力;根据节段式混凝土梁的接缝是否张开,节段式混凝土梁的受力过程可划分为接缝张开前、后2个阶段;在接缝张开前,节段式混凝土梁的力学行为与整体式混凝土梁的无异;接缝张开前、后,节段式混凝土梁的力学行为发生改变;接缝是控制梁抗剪承载力的主要因素,但接缝数量对节段式混凝土梁抗剪承载力的影响不显著。  相似文献   

17.
为明晰超高性能混凝土(UHPC)加固RC结构的界面剪切力学行为,批量开展键槽定量化处理UHPC-NC界面抗剪承载性能试验研究。设计制作8组包含不同深度(t)、宽度(w)和间距(d)的UHPC-NC组合构件,分析了界面剪切荷载-滑移曲线特征,剪切应变分布规律、破坏形态以及极限抗剪承载力。试验结果表明,键槽处理方式能显著增强UHPC-NC界面初始剪切刚度(刚度值高于250 kN·mm-1)并有效提高界面极限抗剪强度(1.46~3.98 MPa,其中大于3 MPa的试件占总数的57.1%)。不同键槽参数t,dw对UHPC-NC界面抗剪强度的影响权值逐渐递减,且正角度开槽对界面抗剪强度的提升幅度为13%~32%,普遍优于负角度组;当深度t较小且w/t≤2时,后浇UHPC键槽部分承受较大剪切荷载,此时UHPC-NC界面出现“混合剪”破坏模式,能够有效发挥UHPC的抗弯拉性能;相同条件下,当w/t≥4时,后浇UHPC键槽面积在界面处占比增大,致使裂缝移至NC侧发展,即由NC主要承担界面剪力。此外,增大键槽间距d可改善界面域的剪力分配,“密集开槽”方式虽能有效提高界面抗剪能力,但考虑到此方式对原结构的损伤较大且施工成本较高,应对开槽深度和间距进行合理优化。提出基于断裂面法的UHPC-NC界面抗剪承载力计算公式,计算误差均在17%以内,计算结果表明,提出的公式可较好地评价定量化键槽处理的UHPC-NC界面抗剪性能。  相似文献   

18.
为解决现有钢桥面铺装因大面积现浇超高性能混凝土(UHPC)产生收缩开裂,需密集配筋,施工现场需要大量蒸养设备等问题,提出了一种采用预制-现浇UHPC板的钢桥面铺装。通过钢-预制UHPC板界面、钢-现浇UHPC板界面和预制-现浇UHPC界面局部模型试验,揭示了采用预制-现浇UHPC板的钢桥面铺装各关键界面黏结性能;通过节段足尺模型试验与有限元分析,明确了车辆荷载下采用预制-现浇UHPC板的钢桥面铺装的荷载效应。研究结果表明:钢-预制UHPC板界面受拉和受剪破坏均发生于粘胶层与预制UHPC板结合面,法向抗拉和切向抗剪承载力可保守地取5.2 MPa和8.7 MPa;栓钉间距在150~320 mm之间时,栓钉加密对钢-现浇UHPC板界面抗剪承载力影响较小,可根据中国规范进行现浇UHPC板中栓钉承载力的计算,抗剪刚度可保守的取110.0 kN·mm-1;界面凿毛处理和湿接缝采用蒸汽养护,可使预制-现浇UHPC接缝的抗剪强度分别提升23%和20%,预制-现浇UHPC接缝抗剪强度可保守地取2.4 MPa;在3倍车辆设计荷载作用下,UHPC板以及钢-UHPC板界面的应力均小于容许应力。提出的采用预制-现浇UHPC板的钢桥面铺装方案可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号