首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
结合声屏障顶端降噪器在铁路声屏障工程中的应用,对顶端降噪器的附加降噪效果及其适用范围进行了测试分析研究。根据现场实测结果,A型声屏障顶端降噪器在距离铁路外轨中心线15 m、距地面不同高度(距地面3-9m高)取得了1.3~2.4 dB(A)的附加降噪效果;C型顶端降噪器在距离铁路外轨中心线12.5 m和25m、距地面不同高度处,取得了2.3~2.9 dB(A)的附加降噪效果。顶端降噪器可作为直立式声屏障的重要补强措施,以提高声屏障的总体降噪效果;对有限高要求,直立式声屏障又不能满足降噪效果要求时,可采用顶端降噪器提高声屏障的降噪效果。  相似文献   

2.
直立式声屏障是我国高速铁路噪声控制主要措施,仅在声影区有较好的降噪效果,全封闭声屏障、半封闭声屏障等进一步降低噪声的声屏障类型虽已在城市轨道交通广泛应用,但在铁路应用案例极少,为了保护"小鸟天堂"生态环境,我国深茂铁路于国内首次采用全封闭声屏障,为了分析其降噪效果,采用间接法进行现场测量,结果表明:动车组运行速度不高于132 km/h时,全封闭声屏障可大幅降低列车通过噪声,且不存在声亮区,距线路不同距离、不同高度处,全封闭声屏障降噪效果可达16~18 dB;呈现宽频降噪性能,对于400 Hz以上的噪声,降噪量高达10 dB以上;630 Hz以上降噪效果高达15 dB以上。试验明确了全封闭声屏障降噪特性,为我国高速铁路声屏障选型和优化设计提供参考。  相似文献   

3.
声屏障工程是防治铁路噪声影响的有效措施,声学设计是保证声屏障工程降噪效果的重要手段和方法。通过郑铁一中声屏障工程学设计研究,给出了声学设计中应考虑的主要内容及解决方法。声屏障建成后,各主要评价点的实际降噪效果与理论计算值相差不超过1dB;主要评价点的24h等效连续A声级平均降噪量为10.4dB,超过预定目标值2.4dB,降噪效果非常显著。  相似文献   

4.
高速铁路引入城区时,不可避免地对沿线的声环境敏感点尤其是高层住宅造成影响。为掌握高速铁路对高层住宅的噪声影响特点,指导工程设计采取可行的降噪措施,基于Cadna/A软件,建立西延高铁与某处声环境敏感点的噪声影响预测模型,以距离铁路20 m处的高层住宅为重点研究对象,预测西延高铁运营对该高层住宅的噪声影响,分别模拟3,10 m高直立式声屏障和半封闭声屏障的降噪效果。结果表明:在一定工况条件下,路基轨面以上5.5 m处,铁路噪声影响达到最大;3 m高直立式声屏障对敏感点地面至轨面以上2.5 m降噪效果明显,10 m高声屏障对高于轨面29.5 m的楼层降噪效果有限,半封闭声屏障对各层降噪效果明显,采取半封闭声屏障可确保该高层住宅噪声影响达标。  相似文献   

5.
我国铁路声屏障应用效果的评价   总被引:2,自引:0,他引:2  
在总结我国既有铁路声屏障应用状况基础上 ,探讨性地提出了铁路声屏障的评价方法和应用效果。建议采用列车通过时段的等效声级插入损失值作为铁路声屏障降噪效果的评价量 ,测点位置除应包括各保护目标外 ,还应增加测量距离铁路外侧轨道中心线 30m处 ,距轨面 1 5m高处的声屏障插入损失值 ,以利于统一比较不同场所的声屏障实际降噪效果。按照上述评价方法 ,目前我国铁路已建成的多数 2 5~ 3 5m高的直立吸声式声屏障 ,在铁路边界测点处的降噪效果为 3 6~ 6 5dB(A)。  相似文献   

6.
对高速铁路声屏障降噪效果影响因素的探讨   总被引:4,自引:0,他引:4  
通过对现场铁路列车辐射噪声测量和理论分析计算,结合影响铁路声屏障降噪效果主要因素,得出如下结论:当列车运行速度低于250km/h时,对铁路沿线1~2层噪声敏感点建筑,采用防撞墙既有效又经济;声屏障相对越高、距轨道中心线越近,降噪效果越好。  相似文献   

7.
城际铁路单侧高层建筑物声屏障形式设计研究   总被引:3,自引:3,他引:0  
选择合理的声屏障形式与高度,可有效降低噪声污染、减少搬迁量。设置声屏障,是控制声传播途径的最有效办法。以某城际铁路穿越城市建成区,为保护单侧高层声环境敏感建筑为例,通过对直立式声屏障、全封闭声屏障和半封闭声屏障的比选,确定声屏障形式选用半封闭式。在满足接触网、桥梁等专业要求的基础上,通过声学计算、结构检算,确定半封闭式声屏障总高度为8m,跨度11.3m。对于列车设计时速250km及以下时速的城际铁路,设置半封闭式声屏障,单侧降噪效果在8.7~11.2dB,可满足铁路边界噪声限制要求。  相似文献   

8.
高速铁路声屏障降噪效果及其影响因素分析   总被引:1,自引:0,他引:1  
根据我国高速铁路(客运专线)声屏障降噪效果实测结果及高速铁路列车运行噪声特性,就声源构成、频率特性、桥面系及防护墙对声屏障降噪效果的影响进行分析。结果表明,随着速度提高,声屏障总体降噪效果呈下降趋势;铁路声屏障对500Hz以上的中高频噪声具有较好的降噪效果,但对250Hz以下的中低频噪声效果不大;桥面系及防护墙可起到一定的声屏障降噪作用。因此,在铁路声屏障设计中应根据高速铁路声源特性进行声学设计计算;在环境影响评价中,也应采用合理的声屏障降噪效果并考虑桥面系及防护墙的屏障作用;同时,应加强提高声屏障构件的低频隔声性能和吸声性能。  相似文献   

9.
针对高速铁路声屏障的高速列车脉动风荷载问题,介绍既有研究资料,并进行高速列车以350km/h,380 km/h的速度通行声屏障区域的CFD计算分析.结果表明,350 km/h速度下最大风压力为1 474 Pa,380 km/h速度下最大风压力为1 707 Pa.声屏障底部承受的风荷载最大,并沿高度向上先缓慢减小至声屏障一半高度后较快减小.沿纵向,声屏障的脉动风压在列车入口处最小,沿着列车前进方向50 m处迅速增大,后稍减小并在100 ~400 m处保持平稳.  相似文献   

10.
高速铁路不同高度声屏障的降噪效果分析   总被引:1,自引:0,他引:1  
为探究不同高度声屏障对高速铁路噪声的降噪效果,采用有限元软件ANSYS并参照武广高铁相关试验段建立声屏障降噪模型。采用声学分析软件SYSNOISE仿真研究3,4,5和6m这4种不同高度直立型反射声屏障的降噪效果。结果表明:在与声屏障法线方向平行且距离轨面1.5和3.5m高的平面内,声屏障高度从3m增加到4m对降噪效果的提高有限,再从4m增加到5m降噪效果显著提高,而声屏障高度超过5m后对降噪效果的继续提高也不明显;在与声屏障法线方向垂直且距离轨道中心线30m的平面内,随着声屏障高度的增加,在距地面15m高以下区域,声屏障高度的变化对噪声级影响较大,但超过此范围影响不大。噪声衰减与声屏障高度并非简单的线性关系,在同时考虑降噪需要和声屏障成本的情况下,高速铁路路基区段声屏障的合适高度为4~5m。  相似文献   

11.
干涉型声屏障结构的研究   总被引:1,自引:1,他引:0  
干涉型声屏障基于声波干涉消声原理并依据铁路噪声源特点设计制造而成。声学模型试验测试结果表明,干涉装置的降噪作用主要体现在位于声影区和亮区之间的过渡区域(亦称灰色区域),干涉装置附加降噪效果为3.0~5.6dB,与同高度的直立形声屏障相比,降噪效果提高2.0~3.2dB。与其它顶部吸声体相比,干涉型声屏障更适宜于控制铁路噪声。因此,在铁路噪声控制工程中具有良好的应用前景。  相似文献   

12.
鉴于高速铁路路基声屏障设置高度有增加的趋势,加之现行铁路行业声屏障通用参考图不能涵盖声屏障高度≥5 m的情况。为解决高速铁路路基段高度≥5 m的直立式声屏障设计问题,找出超高声屏障荷载取值和荷载组合的规律性。从高速铁路路基声屏障荷载分类、荷载计算入手,通过对影响水平荷载取值因素分析,系统阐述水平荷载取值全过程。对不同列车速度下,有车与无车两种工况计算所得的基本组合、标准组合的荷载效应进行分析,举例说明在5 m至12 m声屏障高度范围内,不同工况、不同荷载组合以及不同速度目标值下荷载效应的变化情况,给出柱顶水平位移分析、立柱根部弯矩和剪力等主要效应随高度变化的规律,并针对路基段超高声屏障结构设计中遇见的高路基、高抗震设防烈度等特殊情况提出设计建议。  相似文献   

13.
研究目的:声屏障作为控制铁路噪声最主要的方法之一,能够在传播路径上有效降低铁路噪声源的传播,但仍存在工程造价高、维保费用高、景观效果差等不足。本文根据现场测试结果,从列车声源分布及频谱特性着手,建立矮屏障实验室1∶5缩尺模型,开展矮屏障空间降噪效果研究,从而为矮屏障设计和研发提供测试依据。研究结论:(1)高速铁路主要声源可分为轮轨区域噪声、车体空气动力噪声和集电系统噪声,并以轮轨区域噪声为主;(2)矮屏障位于近轨时,轨面以上3. 5 m场点降噪效果为5. 0 dB(A);远轨时为3. 3 dB(A);在远轨基础上增加线间屏障,降噪效果可提高2. 2 dB(A),达到5. 5 dB(A);综合分析可知,矮屏障能够显著降低250~1 000 Hz频率噪声;(3)线间屏障可弥补矮屏障距离声源较远时的缺陷,可明显增加降噪效果,提高降噪效率,因而将矮屏障作为声屏障的一种补充措施,应用于铁路轨道建设中,可大大提高降噪效果,满足户外声学环境要求。  相似文献   

14.
在我国一高速铁路的城市区域低速区段分别选取钢轨阻尼与声屏障组合措施区段、声屏障区段及对照区段3处进行降噪效果对比试验。试验结果表明:在67~146 km/h低速条件下,距离外轨7. 5,25. 0 m处的钢轨阻尼及声屏障组合降噪措施相比单一声屏障措施的附加降噪量分别为1. 6~2. 0,0. 6~0. 8 dB(A);钢轨横向、垂向加速度减振量为2. 1~2. 8 dB;钢轨阻尼对轮轨噪声主要作用频率具备减振降噪效果。  相似文献   

15.
轨道交通噪声治理是一项很复杂的工程,采用直立式、半封闭、全封闭声屏障已经成为解决该噪声的一种有效途径。采用声线追踪法和虚源法建立预测模型,并采用Cadna3.7大型通用计算平台,对房山线声屏障的工程设计、施工前进行模拟计算,提出了各敏感点采用不同形式声屏障的可行性,使敏感点噪声平均降噪量达10 dB以上,达到环境要求。  相似文献   

16.
双声源模式下高铁声屏障降噪效果仿真分析   总被引:1,自引:0,他引:1  
研究目的:高速铁路与普通铁路噪声源特性存在较大差异,按照传统方法计算设计的声屏障在高速铁路降噪应用中效果不理想。以武广客运专线某路基试验段为模型参照对象,基于高速铁路噪声源特性研究,建立双声源模式的高速铁路声屏障降噪模型,分别对不同声源模式下3 m高直立型声屏障的降噪效果进行仿真分析。研究结论:(1)将仿真结果与实测结果进行对比,发现双声源模式的预测噪声级与实测值较为接近,而单声源模式的计算值明显小于实测结果和双声源模式的仿真结果,偏差达到8 dB A左右;(2)单声源模式的噪声衰减计算结果达到10.7~13.1 dB A,比实测结果显著偏高;(3)针对铁路限界处的噪声超过了规定的限值70 dB A,提出了合理的声屏障优化设计方法以改善沿线的生态环境;(4)将弓网噪声单独考虑的双声源模式可为高速铁路声屏障的设计和应用提供可靠依据。  相似文献   

17.
上海轨道交通6号线全封闭声屏障工程设计   总被引:2,自引:0,他引:2  
简要介绍上海市轨道交通6号线全封闭声屏障的设计、降噪效果;将声屏障钢骨架同时用于悬挂接触网,可减小体量,减小工程造价;全封闭声屏障实际降噪效果最高可达23dB(A),平均降噪值约20dB(A)。  相似文献   

18.
高速铁路列车运行噪声特性研究   总被引:3,自引:0,他引:3  
在对我国高速铁路噪声实测的基础上,分析了我国高速铁路噪声的特性。动车组高速运行时,在桥梁区段峰值均出现在低频段(f=31.5~63Hz);路基区段的噪声频谱呈宽频特性,在低频段(f=31.5—63Hz)和中高频段(f=500—8000Hz)声能量均较为集中。高速铁路列车辐射噪声随速度的关系式与国外辐射噪声随速度的关系基本一致,当高速动车组运行速度大于300km/h后,轮轨噪声、空气动力噪声和集电系统噪声成为主要声源。高速列车辐射噪声几何衰减基本遵守距离加倍,声级衰减3—4dB(A)的规律。  相似文献   

19.
文章叙述室内声屏障的降噪原理及影响因素,特别对固定式和活动式声屏障的设计方法,使用效果作了介绍。用活动式声屏障进行隔声后,集群风机的噪声级由92dB(A)降低到78dB(A),达到预期的效果。  相似文献   

20.
高速铁路声屏障声学计算模式研究   总被引:2,自引:0,他引:2  
基于多通道阵列式声源识别系统和多通道噪声振动实时采集分析系统,对京津城际和京沪高速铁路列车运行状态下的噪声源、空间声场分布以及声屏障降噪效果进行测试和分析。将高速列车声源等效为下部噪声和上部噪声两部分:下部噪声以轮轨噪声和车体气动噪声为主,其声源等效位置确定为轨面以上0.6m处;上部噪声以弓网噪声为主,其声源等效位置确定为轨面以上3.3m处。由此提出基于双声源作为等效声源和以1250Hz作为等效频率的高速铁路声屏障声学计算模式,给出声屏障插入损失和加长量修正计算公式,所得到声屏障的声学计算结果与实测结果吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号