首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
研究目的:声屏障作为控制铁路噪声最主要的方法之一,能够在传播路径上有效降低铁路噪声源的传播,但仍存在工程造价高、维保费用高、景观效果差等不足。本文根据现场测试结果,从列车声源分布及频谱特性着手,建立矮屏障实验室1∶5缩尺模型,开展矮屏障空间降噪效果研究,从而为矮屏障设计和研发提供测试依据。研究结论:(1)高速铁路主要声源可分为轮轨区域噪声、车体空气动力噪声和集电系统噪声,并以轮轨区域噪声为主;(2)矮屏障位于近轨时,轨面以上3. 5 m场点降噪效果为5. 0 dB(A);远轨时为3. 3 dB(A);在远轨基础上增加线间屏障,降噪效果可提高2. 2 dB(A),达到5. 5 dB(A);综合分析可知,矮屏障能够显著降低250~1 000 Hz频率噪声;(3)线间屏障可弥补矮屏障距离声源较远时的缺陷,可明显增加降噪效果,提高降噪效率,因而将矮屏障作为声屏障的一种补充措施,应用于铁路轨道建设中,可大大提高降噪效果,满足户外声学环境要求。  相似文献   

2.
开展400 km/h高速铁路噪声影响研究是践行“交通强国”战略的有力举措。为研究400 km/h高速铁路噪声特性及辐射源强,获取现有直立式声屏障在速度400 km/h条件下降噪效果及适应性,采用有限元模型进行仿真计算,模拟计算400 km/h高速铁路噪声源强并进行组成分析,对高速铁路通用的直立式声屏障降噪效果、耐久性、安全性等进行分析研究,对目前直立式声屏障适应性提出实施建议。研究表明:高速列车以速度400 km/h运行时,距离铁路外轨中心线25 m、轨上3.5 m处,桥梁段总声级为97.8 dB (A),路基段总声级为96.7 dB (A),气动噪声大于轮轨噪声;提出现有直立式声屏障在速度400 km/h条件下插入损失为2.7~8.9 dB (A);在安全方面,提出立柱底部螺栓养护年限;针对目前铁路直立式声屏障通用图适用性进行分析,提出结构安全优化建议。研究结果可指导400 km/h高速铁路噪声影响分析及直立式声屏障设计工作。  相似文献   

3.
高速铁路桥梁声屏障插入损失五声源预测模式研究   总被引:4,自引:1,他引:3  
研究一种高速铁路桥梁声屏障插入损失的五声源预测模式,可应用于时速300 km以上高速铁路声屏障声学设计。对高速铁路噪声源进行现场辨识测试,分析其声源特性,将高速铁路噪声源简化为轮轨区、车体下部、车体上部、集电系统、桥梁结构5个等效噪声源。根据单声源模式的声屏障插入损失预测公式,结合不同车速下声源等效频率和噪声贡献量,同时考虑桥梁翼板对声传播的影响,形成五声源模式的声屏障插入损失预测公式。采用该方法计算2.15 m声屏障插入损失并与现场测试数据对比,结果显示距离线路25~50 m处受声点插入损失预测结果与实测结果吻合度最高。  相似文献   

4.
高速铁路声屏障降噪效果及其影响因素分析   总被引:1,自引:0,他引:1  
根据我国高速铁路(客运专线)声屏障降噪效果实测结果及高速铁路列车运行噪声特性,就声源构成、频率特性、桥面系及防护墙对声屏障降噪效果的影响进行分析。结果表明,随着速度提高,声屏障总体降噪效果呈下降趋势;铁路声屏障对500Hz以上的中高频噪声具有较好的降噪效果,但对250Hz以下的中低频噪声效果不大;桥面系及防护墙可起到一定的声屏障降噪作用。因此,在铁路声屏障设计中应根据高速铁路声源特性进行声学设计计算;在环境影响评价中,也应采用合理的声屏障降噪效果并考虑桥面系及防护墙的屏障作用;同时,应加强提高声屏障构件的低频隔声性能和吸声性能。  相似文献   

5.
高速铁路声屏障声学计算模式研究   总被引:2,自引:0,他引:2  
基于多通道阵列式声源识别系统和多通道噪声振动实时采集分析系统,对京津城际和京沪高速铁路列车运行状态下的噪声源、空间声场分布以及声屏障降噪效果进行测试和分析。将高速列车声源等效为下部噪声和上部噪声两部分:下部噪声以轮轨噪声和车体气动噪声为主,其声源等效位置确定为轨面以上0.6m处;上部噪声以弓网噪声为主,其声源等效位置确定为轨面以上3.3m处。由此提出基于双声源作为等效声源和以1250Hz作为等效频率的高速铁路声屏障声学计算模式,给出声屏障插入损失和加长量修正计算公式,所得到声屏障的声学计算结果与实测结果吻合。  相似文献   

6.
为推动噪声地图在高速铁路噪声管理中的应用,研究噪声预测模型与地理信息系统(GIS)相结合的高速铁路噪声地图绘制技术。首先,根据高速铁路噪声源分布特征和线路结构特征,优化高速铁路多等效声源预测模型和声屏障插入损失计算方法;其次,在GIS软件中搭建某高速铁路三维地理信息模型,二次开发基于该模型的铁路噪声预测技术;然后,进行离散节点的噪声计算,并通过空间插值绘制连续的噪声分布地图。研究结果表明:采用该技术绘制的我国某高速铁路噪声地图与实测结果对比误差小于1 dB(A),验证了该高速铁路噪声地图的准确性和实用性,可作为铁路噪声管理部门制定噪声控制对策的参考依据。  相似文献   

7.
研究目的:高速铁路和普速铁路在噪声源组成、位置及传播特性上均有所不同,高速铁路声屏障结构因受列车运行脉动力作用下的疲劳影响,声屏障结构设计有别于普速铁路。本文通过研究高速及普速铁路声源特性、作用于高速铁路声屏障的气动压力和声屏障结构的动力响应,旨在提高铁路声屏障降噪效果和结构安全性。研究结论:(1)普速铁路声屏障等效声源位置为轨面以上0. 5 m,客货列车的等效频率分别为500 Hz、1 000 Hz;高速铁路声屏障等效声源位置为轨面以上0. 6 m和3. 3~4. 9 m,等效频率为1 250 Hz;(2)高速铁路声屏障设计应考虑脉动气压力作用下的疲劳影响,声屏障单元板与H型钢立柱宜采用直插式,H型钢立柱与基础的连接螺栓应采用高强度螺栓并采取防松动措施;(3)声屏障的设置不能影响铁路线路的维护维修、路基排水,距接触网带电体5 m范围内的声屏障金属构件必须接入综合接地系统;(4)本研究结论可为铁路声屏障设计提供指导和借鉴。  相似文献   

8.
相比传统直立式声屏障,半封闭声屏障对高速铁路噪声显然具有更优的降噪效果,但当前对半封闭声屏障在真实服役状态下的声学性能研究却极其有限。为此,以某高速铁路桥上半封闭声屏障为工程背景,采用现场试验和统计能量分析(SEA)方法进行研究。首先,简要介绍了SEA方法的基本理论。然后,从声源特性、隔声量和降噪效果三方面对半封闭声屏障的现场测试结果进行分析,并与其他相关试验结果进行对比。最后,建立了半封闭声屏障SEA预测模型,并依据现场试验数据进行模型验证。结果表明:多重反射效应使得半封闭声屏障内侧的噪声增加2~3 dB(A);相比高2.15~3.15 m直立式声屏障,半封闭声屏障的降噪效果可提高5.7~2.9 dB(A);声泄漏使得真实服役状态下半封闭声屏障的隔声量小于声学实验室内的测试值;在考虑1.0 mm宽缝隙所引起的声泄漏后,计算模型具有较好的预测精度。  相似文献   

9.
市域铁路噪声影响突出,需要采取有效的噪声防治措施,声屏障作为主动控制措施,一直被广泛采用。基于市域铁路的特点和运行速度,结合市域铁路成灌线测试数据的分析,从声源特性、声屏障设置原则及声学设计、结构形式等方面对市域铁路声屏障设置开展研究。指出:(1)市域铁路声源主要为轮轨噪声,噪声频谱呈宽频特性,桥梁、路堤区段在低频段和中高频段声能量均较为集中,桥梁二次结构噪声影响不能忽视,声屏障的设置应与桥梁结构减振降噪协同开展。(2)市域铁路声屏障声学设计时,评价时间内不能简单地将铁路噪声源视为无限长线声源,建议直立式声屏障附加长度取值为50~70m。(3)市域铁路列车脉动风压对声屏障结构选型影响较小,应加快对直立式声屏障顶部变化型、顶端降噪器的研制。  相似文献   

10.
噪声这种物理污染,在白天达到100dB(A)时,人们会感到烦躁。晚上达到45dB(A)会对正常人的睡眠产生觉醒反应,针对以上原因,结合高速铁路的实际情况,采取声源降噪措施、传播途径上降噪措施、受声点的防护措施来降低高速铁路噪声,以达到高速铁路的环保要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号