首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 421 毫秒
1.
戈亮  顾民  吴乘胜  邵建南 《船舶力学》2012,16(7):767-773
针对水面船CFD标模KCS,进行基于CFD计算/模拟的自航因子预报研究。比拟基于模型试验的水面船自航因子预报,文中开展了船模阻力、螺旋桨模型敞水和船模自航的数值计算/模拟。通过对CFD计算/模拟结果的分析,获得KCS实船的自航因子。CFD计算/模拟及分析的结果(包括:船模阻力,螺旋桨推力、扭矩、效率,实船自航因子等)都与模型试验结果进行了比较,总体上符合较好。  相似文献   

2.
基于CFD模拟的水面船功率性能预报研究   总被引:1,自引:0,他引:1  
论文针对水面船CFD标模KCS,进行CFD计算,模拟实船功率性能预报研究。比拟基于模型试验的水面船功率性能预报,开展了船模阻力、螺旋桨模型敞水和船模自航的数值模拟。通过对CFD模拟结果的分析,获得KCS实船的自航因子,并预报了设计航速下的实船功率。CFD计算模拟、分析及预报结果,都与模型试验及基于模型试验的预报结果进行了比较,总体上符合较好。  相似文献   

3.
M船型阻力数值模拟   总被引:1,自引:0,他引:1  
陈辉  陈克强 《船海工程》2012,41(5):51-53
采用商业软件fluent对M船型阻力进行数值模拟,用VOF方法处理自由液面,得到不同航速下M船阻力。将数值计算结果与模型试验结果进行比较,在Fr〈1时,数值计算结果与船模试验吻合;1  相似文献   

4.
浅水中船舶水动力特性数值计算   总被引:1,自引:0,他引:1  
顾民  吴乘胜 《船舶力学》2005,9(6):40-47
本文对浅水中船舶水动力特性进行数值计算研究.采用RANS方程结合RNG K-ε两方程湍流模型,对一方形系数0.6的系列60船模在浅水中的阻力、升沉、纵倾和兴波进行数值计算,其中自由面采用VOF方法处理;计算中,水深Froude数范围0.6~1.8,包含了临界和超临界水深Froude数.数值计算得到的阻力、升沉和纵倾与模型试验结果及采用三维扩展Boussinesq方程的计算结果进行了比较分析,吻合较好,部分计算结果得到改进.  相似文献   

5.
曹雪  杨启  凌良勇 《船舶工程》2013,35(2):9-12
利用CFD方法计算某内河大型自航绞吸挖泥船在浅水状态下的总阻力。在不同水深及不同航速下对船模周围流场进行数值模拟,计算过程考虑自由面的影响。将计算结果与模型试验作比较,计算结果有较高的可靠性。并通过分析这类船型的流场分布进一步理解船舶在浅水航行中的阻力成因。  相似文献   

6.
粘流中舟艇水阻力与自由面流场的数值计算   总被引:1,自引:0,他引:1  
基于粘流理论研究了舟艇的水阻力与自由面流场.数值计算中,控制方程为完整的N-S方程,并采用κ-ε两方程湍流模型封闭雷诺方程,对自由表面的追踪采用VOF方法.为验证本方法的正确性,以系列60船模进行了考核,得到了不同航速下的船体水阻力、自由面流场和相应的粘性阻力系数.并把计算结果与已发表的试验结论及其他计算结果做了比较,结果表明,本文的计算方法是可信的.  相似文献   

7.
为了研究带自由面的船舶湍流绕流场,选择了一艘ITTC推荐的公开船模作为模拟对象,数值求解RANS方程。此模型为带声呐导流罩和方形尾封板的复杂水面舰船。采用Ogrid块拓扑算法生成质量较高的纯六面体多块结构化网格,计算中采用RNG k-ε湍流模式和标准壁面函数,并使用VOF算法来捕捉自由面。空间离散采用QUICK格式,压力-速度解耦采用PISO算法。将阻力和波形的数值结果与实验数据相比较,总阻力系数误差约2%,船侧波形、船首自由面吻合良好,显示了CFD方法在船舶水动力学中预测带自由面湍流绕流场的有效性。  相似文献   

8.
文章通过模型试验及数值模拟方法对科考船的阻力性能进行研究,确定科考船的阻力情况;将船模阻力的试验值与模拟值进行对比,分析二者之间的差别,并探讨产生该差别的原因;将模型试验及数值模拟时的流场情况与阻力结果进行对比分析,通过相互验证的方式,验证船模阻力试验的准确性,并探讨计算时采用的数值模拟方法的可靠性,以期为之后船型开发提供相关的阻力性能参考,并为日后验证阻力试验的准确性提供相关依据。  相似文献   

9.
舰艇运动自由面的数值模拟   总被引:1,自引:0,他引:1  
舰艇自由面的数值模拟,有基于势流理论和基于粘性流2个研究领域.在粘性流领域中,又有动、固定、无网格法之分.重点论述了固定网格法中的流体体积法(VOF法),并用其中的几何重构模式对某舰模的自由面进行了跟踪模拟,所得直航阻力数值和船模试验吻合良好.  相似文献   

10.
船模阻力数值水池试验不确定度评估   总被引:1,自引:0,他引:1  
吴乘胜  邱耿耀  魏泽  金仲佳 《船舶力学》2015,(10):1197-1208
文章针对水面船模阻力数值水池试验,开展了不确定度分析与评估研究。不确定度分析中,验证方法和流程基于正交设计和方差分析方法,确认方法和流程基于统计推断理论。以水面船标模DTMB5415为对象,进行了船模阻力数值水池试验不确定度分析评估的实例计算,给出了对数值试验结果有重要影响的试验因素和交互作用以及各类不确定度分量的大小,并提出了降低船模阻力数值试验不确定度的建议。  相似文献   

11.
阐述物面重叠技术,介绍重叠网格的基本原理以及物面重叠的处理方法,在此基础上采用单相Level-Set捕捉自由面方法和RANS方程对某型带多件附体的船舶进行阻力数值模拟,对其流场和自由面波形进行分析。与模型试验结果进行对比发现:数值计算结果与试验结果吻合良好,误差满足工程精度要求,验证了物面重叠技术应用于多附体船舶阻力数值模拟的可靠性。  相似文献   

12.
一种计及姿态变化的船舶阻力预报方法   总被引:2,自引:1,他引:1  
对于航行于水面的舰船,船体姿态会随着航速的增加在航行中发生明显变化,这种姿态变化后的阻力较通常计算的以约束模型为基准的阻力预报是有明显差别的。采用CFD方法实现了以KCS船为模型进行模型自由状态下的阻力预报,并和相关实验数据进行了比较。结果表明,该方法避免了由于船体运动造成流场网格扭曲与计算发散等问题,具有良好的稳定性。另外,该方法充分考虑了船体姿态的影响,计算结果令人满意。  相似文献   

13.
绕船体自由面周围三维粘性流场的数值模拟   总被引:7,自引:0,他引:7  
本文采用有限体积法通过求解不可压缩的雷诺平均(RANS)方程数值模拟了包括兴波的三维船体周围的粘性流场,湍流模式使用了子网格尺度模式(SGS)和Baldwin-Lomax模式相结合的混合模式.对于自由表面的处理,采用了任意拉格朗日-欧拉方法,网格为不仅与物体表面贴体,而且与自由表面贴体的动网格,即随着自由表面的变化要不断地重新划分网格.虽然此方法需要很长的计算时间,但能较好地描述船体的兴波情况.本文计算了系列60船模在Fn=0.316,Re=1.9×106时带自由面的粘性流场,计算结果与试验结果吻合较好.,An finite - volume method solving of incompressible RANS Equations is developed for the numeri-cal simulation of three - dimensional viscous flow with free - surface about a ship. A hybrid turbulence mod-el by combining the sub - grid scale (SGS) model and the Baldwin- Lomax model is used in this pa-per. The arbitrary - Lagrange - Euler formulation is devised for the treatment of free surface boundary condi-tion. The boundary - fitted coordinate system is fitted not only to the ship hull surface but also to the freesurface, so the computational grid is regenerated to follow the free surface deformation. Although this methodneeds spend much longer computational time, but it can fairly display wave pattern made by a ship. The nu-merical simulation has been carried out for viscous flow with free surface past Series 60 ship hull at Fn =0. 316, Re = 1.9 × 106. The computed results are in reasonable agreement with experimental measure-ments.  相似文献   

14.
In this paper, we present a Finite pointset method (FPM) for the numerical simulation of free surface flow around a ship in calm water. It is a Lagrangian and meshless particle scheme which is applied to the projection method for the incompressible governing equations. This requires the solution of Poisson problems in each time step, so a moving least squares (MLS) interpolants is used for the spatial derivatives in order to discretize the Poisson equation with pressure-Dirichlet condition of free surface flow in meshless structure. Meanwhile, an additional problem of the periodic particle locations redistribution in the present approach is still handled by MLS interpolants. With the proposed FPM technique, problems associated with the free surface flow around a ship are circumvented. A verification of numerical modeling is made using the Wigley hull and the validity of the proposed methodology is examined by comparing the detail of wave profile and wave-making resistance with Series 60 model. The results demonstrate that FPM is able to perform efficient and stable simulations of free surface flow around a ship.  相似文献   

15.
Ship maneuvering in waves includes the performance of ship resistance, seakeeping, propulsion, and maneuverability. It is a complex hydrodynamic problem with the interaction of many factors. With the purpose of directly predicting the behavior of ship maneuvering in waves, a CFD solver named naoe-FOAM-SJTU is developed by the Computational Marine Hydrodynamics Lab(CMHL) in Shanghai Jiao Tong University. The solver is based on open source platform OpenFOAM and has introduced dynamic overset grid technology to handle complex ship hull-propeller-rudder motion system. Maneuvering control module based on feedback control mechanism is also developed to accurately simulate corresponding motion behavior of free running ship maneuver. Inlet boundary wavemaker and relaxation zone technique is used to generate desired waves. Based on the developed modules, unsteady Reynolds-averaged Navier-Stokes(RANS) computations are carried out for several validation cases of free running ship maneuver in waves including zigzag, turning circle, and course keeping maneuvers. The simulation results are compared with available benchmark data. Ship motions, trajectories, and other maneuvering parameters are consistent with available experimental data, which indicate that the present solver can be suitable and reliable in predicting the performance of ship maneuvering in waves. Flow visualizations, such as free surface elevation, wake flow, vortical structures, are presented to explain the hydrodynamic performance of ship maneuvering in waves. Large flow separation can be observed around propellers and rudders. It is concluded that RANS approach is not accurate enough for predicting ship maneuvering in waves with large flow separations and detached eddy simulation(DES) or large eddy simulation(LES) computations are required to improve the prediction accuracy.  相似文献   

16.
缪爱琴 《船舶工程》2014,36(4):17-20
渔政船是进行海上渔政监管与执法的专业船只,快速性是保证其顺利完成任务的关键因素。为了快速、准确地预报渔政船的兴波阻力,以Rankine源法和Michell积分法为基础,编制相应的数值计算程序,计算了某渔政船的兴波阻力,并将其计算结果与阻力试验值相比较,结果表明Rankine源法和试验值较为接近;再将Rankine源法与Holtrop法、Slender-body理论进一步地分析比较,发现对于高速渔政船来说,只要船体网格和自由面网格划分合理,Rankine源法在预报阻力方面优势更加突出。  相似文献   

17.
Numerical simulations of incompressible flows, with and without free surface, by means of high-order Godunov-type schemes are presented; the results are compared with the second-order essentially nonoscillatory (ENO) scheme, already implemented and extensively used by the authors for the simulation of flows around ship hulls. Uncertainty assessment and convergence properties are discussed for two practical test cases: the steady and unsteady laminar flow past a NACA 0012 profile with and without incidence, and the steady free surface flow past a ship hull at model Reynolds number. The analysis is aimed to highlight advantages and drawbacks of the numerical schemes considered herein. This work was presented in part at the International Conference on Computational Methods in Marine Engineering—MARINE 2007, Barcelona, June 3–4, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号