首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Activities of the naturally occurring, short-lived and highly particle-reactive radionuclide tracer 234Th in the dissolved and particulate phase were measured at three shallow-water stations (maximum water depths: 15.6, 22.7 and 30.1 m) in Mecklenburg Bay (south-western Baltic Sea) to constrain the time scales of the dynamics and the depositional fate of particulate matter. Activities of particle-associated (> 0.4 μm) and total (particulate + dissolved) 234Th were in the range of 0.08–0.11 dpm L− 1 and 0.11–0.20 dpm L− 1, respectively. The activity ratio of total 234Th and its long-lived and conservative parent nuclide 238U was well below unity (range: 0.09–0.19) indicating substantial radioactive disequilibria throughout the water column, very dynamic trace-metal scavenging and particle export from the water column at all three stations. For the discussion the 234Th data of this study were combined with previously published water-column 234Th and particulate-matter data from Mecklenburg Bay (Kersten et al., 1998. Applied Geochemistry 13, 339–347). The resulting average vertical distribution of total 234Th/238U disequilibria was used to estimate the depositional 234Th flux to the sediment. There was a virtually constant net downward flux of 234Th of about 28 dpm m− 2 d− 1 leaving each water layer of one meter thickness. Thorium-234-derived net residence times of particulate material regarding settling from a given layer in the water column were typically on the order of days, but with maximum values of up to a couple of weeks. Based on an average ratio of particulate matter (PM) to particle-associated 234Th a net flux of about 145 mg PM m− 2 d− 1 was estimated to leave each water layer of one meter thickness. The estimated cumulative water-column-derived particulate-matter fluxes at the seafloor are higher by a factor of about 2 than previously published sediment-derived estimates for Mecklenburg Bay. This suggests that about half of the settling particulate material is exported from the study area and/or subject to processes such as mechanical breakdown, remineralisation and dissolution. Lateral particulate-matter redistribution and particle breakdown in the water column (as opposed to the sediment) seem to be favoured by (repeated) particle resuspension from and resettling to the seafloor before ultimate sedimentary burial. The importance of net lateral redistribution of particulate material seems to increase towards the seafloor and be particularly high within the bottommost few meters of the water column.  相似文献   

2.
The dissolved lead was studied in the whole salinity gradient of the system composed of the Loire estuary and the North Biscay continental shelf. About 130 samples were collected in winter 2001 and spring 2002 during Nutrigas and Gasprod campaigns (Programme PNEC-Golfe de Gascogne, RV Thalassa) and metal measurements were conducted on board by Potentiometric Stripping Analysis. In the Loire estuary, levels of dissolved lead ranged from 0.15 to 0.24 nM and from 0.04 to 0.26 nM in winter and spring, respectively. Compared to the concentrations reported in 1987 and 1990 (0.4–1.7 nM; Boutier, B., Chiffoleau, J.F., Auger, D., Truquet, I., 1993. Influence of the Loire river on dissolved lead and cadmium concentrations in coastal waters of Brittany. Estuar. Coast. Shelf S., 36:133–143, Estuarine, Coastal and Shelf Science 36, 133–143) our study indicated much lower values. The fall in concentration in the estuary could be attributed to the stopping of activity of Octel, a big manufacturer of tetra alkyl lead. Discharge in dissolved metal to the continental shelf by the Loire river was assessed as 7.5 and 1.9 kg day− 1 for winter and spring, respectively. On the continental shelf, levels of dissolved lead varied within 0.06 and 0.27 nM in winter (0.15 ± 0.06 nM, sd = 1.96, n = 49), whereas concentrations measured in spring were in the range 0.06–0.17 nM (0.09 ± 0.03 nM, sd = 1.96, n = 60). This difference in metal concentration was related to the amounts of rainfall that have fallen over the continental shelf: estimations of inputs by this way (74 and 32 kg day− 1 in winter and spring, respectively) appeared to be significantly higher than inputs from the Loire river (7.5 and 1.9 kg day− 1 in winter and spring, respectively). The distributions of dissolved metal in the surface waters highlighted the role of suspended particular matter (SPM) for a rapid “trapping” of lead near the mouth of the estuary. The vertical distributions showed, in the stratified area, a biological transfer of lead between winter and spring from surface waters to the halocline.  相似文献   

3.
Organic carbon budget for the Gulf of Bothnia   总被引:1,自引:0,他引:1  
We calculated input of organic carbon to the unproductive, brackish water basin of the Gulf of Bothnia from rivers, point sources and the atmosphere. We also calculated the net exchange of organic carbon between the Gulf of Bothnia and the adjacent marine system, the Baltic Proper. We compared the input with sinks for organic carbon; permanent incorporation in sediments and mineralization and subsequent evasion of CO2 to the atmosphere. The major fluxes were riverine input (1500 Gg C year− 1), exchange with the Baltic Proper (depending on which of several possible DOC concentration differences between the basins that was used in the calculation, the flux varied between an outflow of 466 and an input of 950 Gg C year 1), sediment burial (1100 Gg C year− 1) and evasion to the atmosphere (3610 Gg C year− 1). The largest single net flux was the emission of CO2 to the atmosphere, mainly caused by bacterial mineralization of organic carbon. Input and output did not match in our budget which we ascribe uncertainties in the calculation of the exchange of organic carbon between the Gulf of Bothnia and the Baltic Proper, and the fact that CO2 emission, which in our calculation represented 1 year (2002) may have been overestimated in comparison with long-term means. We conclude that net heterotrophy of the Gulf of Bothnia was due to input of organic carbon from both the catchment and from the Baltic Proper and that the future degree of net heterotrophy will be sensible to both catchment export of organic carbon and to the ongoing eutrophication of the Baltic Proper.  相似文献   

4.
The Mackenzie River is the largest river on the North American side of the Arctic and its huge freshwater and sediment load impacts the Canadian Beaufort Shelf. Huge quantities of sediment and associated organic carbon are transported in the Mackenzie plume into the interior of the Arctic Ocean mainly during the freshet (May to September). Changing climate scenarios portend increased coastal erosion and resuspension that lead to altered river-shelf-slope particle budgets. We measured sedimentation rates, suspended particulate matter (SPM), particle size and settling rates during ice-free conditions in Kugmallit Bay (3–5 m depth). Additionally, measurements of erosion rate, critical shear stress, particle size distribution and resuspension threshold of bottom sediments were examined at four regionally contrasting sites (33–523 m depth) on the Canadian Beaufort Shelf using a new method for assessing sediment erosion. Wind induced resuspension was evidenced by a strong relationship between SPM and wind speed in Kugmallit Bay. Deployment of sediment traps showed decreasing sedimentation rates at sites along an inshore–offshore transect ranging from 5400 to 3700 g m− 2 day− 1. Particle settling rates and size distributions measured using a Perspex settling chamber showed strong relationships between equivalent spherical diameter (ESD) and particle settling rates (r= 0.91). Mean settling rates were 0.72 cm s− 1 with corresponding ESD values of 0.9 mm. Undisturbed sediment cores were exposed to shear stress in an attempt to compare differences in sediment stability across the shelf during September to October 2003. Shear was generated by vertically oscillating a perforated disc at controlled frequencies corresponding to calibrated shear velocity using a piston grid erosion device. Critical (Type I) erosion thresholds (u) varied between 1.1 and 1.3 cm s− 1 with no obvious differences in location. Sediments at the deepest site Amundsen Gulf displayed the highest erosion rates (22–54 g m− 2 min− 1) with resuspended particle sizes ranging from 100 to 930 µm for all sites. There was no indication of biotic influence on sediment stability, although our cores did not display a fluff layer of unconsolidated sediment. Concurrent studies in the delta and shelf region suggest the importance of a nepheloid layer which transports suspended particles to the slope. Continuous cycles of resuspension, deposition, and horizontal advection may intensify with reduction of sea ice in this region. Our measurements coupled with studies of circulation and cross-shelf exchange allow parameterization and modeling of particle dynamics and carbon fluxes under various climate change scenarios.  相似文献   

5.
Large-volume sampling of 234Th was conducted to estimate particulate organic carbon (POC) export in conjunction with drifting sediment trap deployments in the northern Barents Sea in July 2003 and May 2005. 234Th-derived POC fluxes averaged 42.3 ± 39.7 mmol C m− 2 d− 1 in 2003 and 47.1 ± 30.6 mmol C m− 2 d− 1 in 2005. Sediment trap POC fluxes averaged 13.1 ± 8.2 mmol C m− 2 d− 1 in 2003 and 17.3 ± 11.4 mmol C m− 2 d− 1 in 2005, but better reflected the transient bloom conditions that were observed at each station within a season. Although 234Th fluxes agreed within a factor 2 at most stations and depths sampled, sediment trap POC fluxes were lower than large-volume POC flux estimates at almost every station. This may represent an under-collection of POC by the drifting sediment traps or, conversely, an over-collection of POC by the large-volume sampling of 234Th. It is hypothesized that the offset between the two methods is partly due to the presence of the prymnesiophyte Phaeocystis pouchetii, which potentially causes a large variation in > 53-μm POC/234Th ratios. Due to the large proportion of dissolved carbon or mucilage released by P. pouchetii, and because it is thought that P. pouchetii does not contribute significantly to the vertical export of biogenic matter in the Barents Sea, the application of large-volume sampling of 234Th may yield relatively high, and possibly inaccurate POC/234Th ratios. Hence, POC fluxes derived from 234Th sampling may be inappropriate and drifting sediment traps might be a more reliable method to measure the vertical export of biogenic matter in regions that have recurrent P. pouchetii blooms, such as the Barents Sea.  相似文献   

6.
7.
Time-series samples of settling particles were collected in the water column of Gaoping (formerly spelled Kaoping) Submarine Canyon (KPSC) with two sediment traps on taut-line moorings deployed at two different depths (60 and 280 m) between May 26 and June 27, 2004. Average total polycyclic aromatic hydrocarbon (PAH) concentrations of upper and lower trap array samples were 310 ± 61 ng g− 1 dw (range: 200–440) and 240 ± 36 ng g− 1 dw (range: 180–290), respectively. Principal component analysis results suggest that PAH sources in the trap-collected particles included diesel vehicle/coal burning, diagenetic sources, and petroleum release. PAH downward fluxes based on settling particles were estimated to be 12–44 μg m− 2 d− 1. These values are higher than those reported in the literature for most coastal areas. During the sampling period, both traps were significantly tilted by tidal current and fluctuated vertically. The upper traps experienced greater vertical movements, thus their particle characteristics (e.g., POC, particle mass, and fine particle fraction) varied more than those of the lower traps. Hourly depth variations of the tilted sediment trap array were echoed by the corresponding total PAH concentrations. Moreover, the PAH composition of the collected particles was related to the flow direction and speed. These observations suggest that PAHs can be used as an effective chemical tracer for the transport of terrestrial and marine particulates in a complex aquatic environment like Gaoping (Kaoping) Submarine Canyon.  相似文献   

8.
Turbulent overturning on scales greater than 10 m is observed near the bottom and in mid-depth layers within the Gaoping (formerly spelled Kaoping) Submarine Canyon (KPSC) in southern Taiwan. Bursts of strong turbulence coexist with bursts of strong sediment concentrations in mid-depth layers. The turbulence kinetic energy dissipation rate in some turbulence bursts exceeds 10− 4 W kg− 1, and the eddy diffusivity exceeds 10− 1 m2 s− 1. Within the canyon, the depth averaged turbulence kinetic energy dissipation rate is ~ 7 × 10− 6 W kg− 1, and the depth averaged eddy diffusivity is ~ 10− 2 m2 s− 1. These are more than two orders of magnitude greater than typical values in the open ocean, and are much larger than those found in the Monterey Canyon where the strong turbulent mixing has also been. The interaction of tidal currents with the complex topography in Gaoping Submarine Canyon is presumably responsible for the observed turbulent overturning via shear instability and the breaking of internal tides and internal waves at critical frequencies. Strong 1st-mode internal tides exist in KPSC. The depth averaged internal tidal energy near the canyon mouth is ~ 0.17 m2 s− 2. The depth integrated internal tidal energy flux at the mouth of the canyon is ~ 14 kW m− 1, propagating along the axis of the canyon toward the canyon head. The internal tidal energy flux in the canyon is 3–7 times greater than that found in Monterey Canyon, presumably due to the more than 10 times larger barotropic tide in the canyon. Simple energy budget calculations conclude that internal tides alone may provide energy sufficient to explain the turbulent mixing estimated within the canyon. Further experiments are needed in order to quantify the seasonal and geographical distributions of internal tides in Gaoping Submarine Canyon and their effects on the sediment flux in the canyon.  相似文献   

9.
The river–sea system consisting of the Gaoping (new spelling according to the latest government's directive, formerly spelled Kaoping) River (KPR), shelf, and Submarine Canyon (KPRSC) located off southern Taiwan is an ideal natural laboratory to study the source, pathway, transport, and fate of terrestrial substances. In 2004 during the flood season of the KPR, a system-wide comprehensive field experiment was conducted to investigate particle dynamics from a source-to-sink perspective in the KPRSC with the emphasis on the effect of particle size on the transport, settling, and sedimentation along the pathway. This paper reports the findings from (1) two sediment trap moorings each configured with a Technicap PPS 3/3 sediment trap, and an acoustic current meter (Aquadopp); (2) concurrent hydrographic profiling and water sampling was conducted over 8 h next to the sediment trap moorings; and (3) box-coring in the head region of the submarine canyon near the mooring sites. Particle samples from sediment traps were analyzed for mass fluxes, grain-size composition, total organic carbon (TOC) and nitrogen (TN), organic matter (OM), carbonate, biogenic opal, polycyclic aromatic hydrocarbon (PAH), lithogenic silica and aluminum, and foraminiferal abundance. Samples from box cores were analyzed for grain-size distribution, TOC, particulate organic matter (POM), carbonate, biogenic opal, water content, and 210Pbex. Water samples were filtered through 500, 250, 63, 10 µm sieves and 0.4 µm filter for the suspended sediment concentration of different size-classes.Results show that the river and shelf do not supply all the suspended particles near the canyon floor. The estimated mass flux near the canyon floor exceeds 800 g/m2/day, whose values are 2–7 times higher than those at the upper rim of the canyon. Most of the suspended particles in the canyon are fine-grained (finer than medium silt) lithogenic sediments whose percentages are 90.2% at the upper rim and 93.6% in the deeper part of the canyon.As suspended particles settle through the canyon, their size-composition shows a downward fining trend. The average percentage of clay-to-fine-silt particles (0.4–10 µm) in the water samples increases from 22.7% above the upper rim of the canyon to 56.0% near the bottom of the canyon. Conversely, the average percentage of the sand-sized (> 63 µm) suspended particles decreases downward from 32.0% above the canyon to 12.0% in the deeper part of the canyon. Correspondingly, the substrate of the canyon is composed largely of hemipelagic lithogenic mud. Parallel to this downward fining trend is the downward decrease of concentrations of suspended nonlithogenic substances such as TOC and PAH, despite of their affinity to fine-grained particles.On the surface of the canyon, down-core variables (grain size, 210Pbex activity, TOC, water content) near the head region of the canyon show post-depositional disturbances such as hyperpycnite and turbiditic deposits. These deposits point to the occurrences of erosion and deposition related to high-density flows such as turbidity currents, which might be an important process in submarine canyon sedimentation.  相似文献   

10.
We examined the influence of the Mackenzie River plume on sinking fluxes of particulate organic and inorganic material on the Mackenzie Shelf, Canadian Arctic. Short-term particle interceptor traps were deployed under the halocline at 3 stations across the shelf during fall 2002 and at 3 stations along the shelf edge during summer 2004. During the two sampling periods, the horizontal patterns in sinking fluxes of particulate organic carbon (POC) and chlorophyll a (chl a) paralleled those in chl a biomass within the plume. Highest sinking fluxes of particulate organic material occurred at stations strongly influenced by the river plume (maximum POC sinking fluxes at 25 m of 98 mg C m− 2 d− 1 and 197 mg C m− 2 d− 1 in 2002 and 2004, respectively). The biogeochemical composition of the sinking material varied seasonally with phytoplankton and fecal pellets contributing considerably to the sinking flux in summer, while amorphous detritus dominated in the fall. Also, the sinking phytoplankton assemblage showed a seasonal succession from a dominance of diatoms in summer to flagellates and dinoflagellates in the fall. The presence of the freshwater diatom Eunotia sp. in the sinking assemblage directly underneath the river plume indicates the contribution of a phytoplankton community carried by the plume to the sinking export of organic material. Yet, increasing chl a and BioSi sinking fluxes with depth indicated an export of phytoplankton from the water column below the river plume during summer and fall. Grazing activity, mostly by copepods, and to a lesser extent by appendicularians, appeared to occur in a well-defined stratum underneath the river plume, particularly during summer. These results show that the Mackenzie River influences the magnitude and composition of the sinking material on the shelf in summer and fall, but does not constitute the only source of material sinking to depth at stations influenced by the river plume.  相似文献   

11.
During 2004, 10 samplings were performed in order to measure dissolved methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) in the surface waters of Río San Pedro, a tidal creek in the salt marsh area of the Bay of Cádiz (SW Spain). The inner partvs of the creek is affected by the inputs coming from an intensive fish farm and the drainage of an extensive salt marsh area.Dissolved CH4, CO2 and N2O concentrations ranged from 11 to 88 nM, 36 to 108 μM and 14 to 50 nM, respectively. Surface waters were in all cases oversaturated with respect to the atmosphere, reaching values of up to 5000% for CH4, 1240% for CO2 and 840% for N2O. Dissolved CH4, CO2 and N2O showed a significant tidal and seasonal variability. Over a tidal cycle, concentrations were always highest during low tide, which points to the influence of the inputs from the fish farm effluent and the drainage of the adjacent salt marsh area, as well as in situ production within the system. Dissolved CH4, CO2 and N2O seasonal patterns were similar and showed maximum concentrations in summer conditions. Using four different parameterizations to calculate the gas transfer coefficients [Liss, P.S. and Merlivat, L., 1986. Air-sea exchange rates: introduction and synthesis. In P. Buat-Ménard (Ed.), The Role of Air-Sea Exchanges in Geochemical Cycling. Reidel, Dordrecht, The Netherlands, p. 113–127.; Clark, J.F., Schlosser, P., Simpson, H.J., Stute, M., Wanninkhof, R., and Ho, D.T., 1995. Relationship between gas transfer velocities and wind speeds in the tidal Hudson River determined by the dual tracer technique. In: B. Jähne and E. Monahan (Eds.), Air-Water Gas Transfer: AEON Verlag and Studio, Hanau, Germany, pp. 785–800.; Carini, S., Weston, N., Hopkinson, G., Tucker, J., Giblin, A. and Vallino, J., 1996. Gas exchanges rates in the Parker River estuary, Massachusetts. Biol. Bull., 191: 333–334.; Kremer, J.N., Reischauer, A. and D'Avanzo, C., 2003. Estuary-specific variation in the air-water gas exchange coefficient for oxygen. Estuaries, 26: 829–836.], the averaged air–water fluxes of CH4, CO2 and N2O from the creek to the atmosphere ranged between 34 and 150 μmol CH4 m− 2 day− 1, 73 and 177 mmol CO2 m− 2 day− 1 and 24 and 62 μmol N2O m−2 day−1, respectively.  相似文献   

12.
Sediment physical properties of the DYNAS study area   总被引:2,自引:0,他引:2  
Physical properties of the deposits in the DYNAS study area, the Mecklenburg Bay, were investigated using sediment echosounders and laboratory analysis were carried out on undisturbed short sediment cores. Wet bulk densities of about 1.2 g/cm3 for mud and up to 1.9 g/cm3 for silty sand were found in surface sediments of the Mecklenburg Bay. Sediment density–depth functions were approximated by logarithmic regression functions at different depth intervals. Sediment consolidation was studied by both (i) consolidation tests of sediment samples and (ii) from the void ratio–overburden pressure relation in natural sediments. Low shear strength values of 9–71 Pa were measured at the mud surface. Downcore, a depth gradient of about 14.5 Pa/cm was calculated. Sediments with high silt and sand contents are characterized by shear strength values of up to 3000 Pa. Published formulas derived from erosion studies were used to calculate the critical shear stress using wet bulk density and shear strength. The obtained results demonstrate clearly, that there is still a wide gap in knowledge about the relationships between erosion parameters and sediment physical properties.  相似文献   

13.
We use hydrographic, current, and microstructure measurements, and tide-forced ocean models, to estimate benthic and interfacial mixing impacting the evolution of a bottom-trapped outflow of dense shelf water from the Drygalski Trough in the northwestern Ross Sea. During summer 2003 an energetic outflow was observed from the outer shelf ( 500 m isobath) to the  1600 m isobath on the continental slope. Outflow thickness was as great as  200 m, and mean speeds were  0.6 m s− 1 relative to background currents exceeding  1 m s− 1 that were primarily tidal in origin. No outflow was detected on the slope in winter 2004, although a thin layer of dense shelf water was present on the outer shelf. When the outflow was well-developed, the estimated benthic stress was of order one Pascal and the bulk Froude number over the upper slope exceeded one. Diapycnal scalar diffusivity (Kz) values in the transition region at the top of the outflow, estimated from Thorpe-scale analysis of potential density and measurements of microscale temperature gradient from sensors attached to the CTD rosette, were of order 10− 3−10− 2 m2 s− 1. For two cases where the upper outflow boundary was particularly sharply defined, entrainment rate we was estimated from Kz and bulk outflow parameters to be  10− 3 m s− 1 ( 100 m day− 1). A tide-forced, three-dimensional primitive equation ocean model with Mellor-Yamada level 2.5 turbulence closure scheme for diapycnal mixing yields results consistent with a significant tidal role in mixing associated with benthic stress and shear within the stratified ocean interior.  相似文献   

14.
Within the SCAR's international EASIZ programme, as part of the benthic–pelagic coupling experiment, grain size and organic matter contents in marine surface sediment were measured. Samples were taken during the austral autumn of 2000 from 3 regions in the eastern Weddell Sea: Kapp Norvegia, Four Seasons Bank, and Austasen.In general, sediments were fine sand with a grain size fraction < 200 μm representing more than 40% of the total weight. The sediments from Four Seasons Bank (64 to 107 m depth) were coarser than those from Austasen and Kapp Norvegia (209 to 480 m depth), presumably due to winnowing of fine sediment at shallow depths. Organic carbon (OC) content ranged from 0.25% to 1.2% and constituted 10% to 97% of the total carbon. The samples from Kapp Norvegia presented the highest OC values. Overall, protein (PRT), lipid (LPD), and carbohydrate (CHO) contents were similar to those in sediment from cold regions (e.g., the North Atlantic and the Ross Sea) but higher than those in sediment from other Antarctic and more septentrional regions (e.g., the Ross Sea and the Mediterranean). The difference within the Antarctic is explained through the local conditions in Terra Nova Bay and Kapp Norvegia. In the Antarctic, PRT and LPD carbon were the main contributors to the biopolymeric carbon (BPC). In the eastern Weddell Sea shelf, the BPC accounted for more than 90% of the OC in most of the samples. More than 82% of the total PRT, LPD, and CHO were present in the fraction < 200 μm. This work remarks the existence of sediments with a high nutritional value persistent several weeks after the spring–summer pulse of fresh organic matter. It is also highlighted the high potential availability of these sediments (due to its grain size) for the benthic communities inhabiting this high-latitude continental shelf.  相似文献   

15.
It is well known that the general circulation on the Catalan continental slope is dominated by a quasi-permanent southwestward geostrophic jet associated to the so-called Catalan front [Millot, C., 1987. Circulation in the western Mediterranean sea. Oceanol Acta 10, 143–149; Font, J., Salat, J., Tintoré, J., 1988. Permanent features of the circulation in the Catalan Sea. Oceanol. Acta 9, 51–57]. On the continental shelf, however, the flow is modified by the action of friction which enhances also other nonlinear interactions. Several authors have hypothesized that the shelf circulation is anticyclonic north of the Ebro delta [Salat, J., Manriquez, M., Cruzado, A., 1978. Hidrografia del golfo de Sant Jordi. Campaña Delta (Abril 1970). Investigación Pesquera 42 (2), 255–272; Ballester, A., Castellví, J., 1980. Estudio hidrográfico y biológico de las plataformas continentales españolas: I. Efecto de los efluentes de una planta de energía nuclear en el Golfo de San Jorge (Febrero 1975–Octubre 1976). Informes Técnicos del Instituto de Investigaciones Pesqueras 76, 70 pp.]. A quasi-3D finite element code based on the shallow-water equations has been used to explore the effect of several mechanisms which might be responsible for such a local circulation pattern, and in particular of wind. The obtained numerical results suggest that the basic anticyclonic structure of the mean flow is controlled by the bathymetry and that the clockwise-rotating mean flow pattern is not a permanent circulation feature. It is seen that the characteristic local wind stress fields—computed through interpolation of the records of a local network of meteo stations—may ‘enhance' or ‘delete' the anticyclonic gyre depending on the sign of their relative vorticity. According to the analysis of a 2-yr record of local wind data, the net contribution of wind events with a duration longer than 24 h is to reinforce the anticyclonic circulation (over 70% of these wind fields supply negative relative vorticity to the study area).  相似文献   

16.
Seasonal changes in the abundance and biomass of cyanobacteria (Synechococcus and Prochlorococcus) and picoeukaryotes were studied by flow cytometry in the upper layers of the central Cantabrian Sea continental shelf, from April 2002 to April 2006. The study area displayed the typical hydrographic conditions of temperate coastal zones. A marked seasonality of the relative contribution of prokaryotes and eukaryotes was found. While cyanobacteria were generally more abundant for most of the year (up to 2.4 105 cells mL− 1), picoeukaryotes dominated the community (up to 104 cells mL− 1) from February to May. The disappearance of Prochlorococcus from spring through summer is likely related to shifts in the prevailing current regime. The maximum total abundance of picophytoplankton was consistently found in late summer–early autumn. Mean photic-layer picoplanktonic chlorophyll a ranged from 0.06 to 0.53 µg L− 1 with a relatively high mean contribution to total values (33 ± 2% SE), showing maxima around autumn and minima in spring. Biomass (range 0.58–40.16 mg C m− 3) was generally dominated by picoeukaryotes (mean ± SE, 4.28 ± 0.27 mg C m− 3) with an average contribution of cyanobacteria of 30 ± 2%. Different seasonality of pigment and biomass values resulted in a clear temporal pattern of picophytoplanktonic carbon to chlorophyll a ratio, which ranged from 10 (winter) to 140 (summer). This study highlights the important contribution of picoplanktonic chlorophyll a and carbon biomass in this coastal ecosystem.  相似文献   

17.
The Baltic Sea is one of many aquatic ecosystems that show long-term declines in dissolved silicate (DSi) concentrations due to anthropogenic alteration of the biogeochemical Si cycle. Reductions in DSi in aquatic ecosystems have been coupled to hydrological regulation reducing inputs, but also with eutrophication, although the relative significance of both processes remains unknown for the observed reductions in DSi concentrations. Here we combine present and historical data on water column DSi concentrations, together with estimates of present river DSi loads to the Baltic, the load prior to damming together with estimates of the long-term accumulation of BSi in sediments. In addition, a model has been used to evaluate the past, present and future state of the biogeochemical Si cycle in the Baltic Sea. The present day DSi load to the Baltic Sea is 855 ktons y− 1. Hydrological regulation and eutrophication of inland waters can account for a reduction of 420 ktons y− 1 less riverine DSi entering the Baltic Sea today. Using published data on basin-wide accumulation rates we estimate that 1074 ktons y− 1 of biogenic silica (BSi) is accumulating in the sediments, which is 36% higher than earlier estimates from the literature (791 ktons y− 1). The difference is largely due to the high reported sedimentation rates in the Bothnian Sea and the Bothnian Bay. Using river DSi loads and estimated BSi accumulation, our model was not able to estimate water column DSi concentrations as burial estimates exceeded DSi inputs. The model was then used to estimate the BSi burial from measured DSi concentrations and DSi load. The model estimate for the total burial of BSi in all three basins was 620 ktons y− 1, 74% less than estimated from sedimentation rates and sediment BSi concentrations. The model predicted 20% less BSi accumulation in the Baltic Proper and 10% less in the Bothnian Bay than estimated, but with significantly less BSi accumulation in the Bothnian Sea by a factor of 3. The model suggests there is an overestimation of basin-wide sedimentation rates in the Bothnian Bay and the Bothnian Sea. In the Baltic Proper, modelling shows that historical DSi concentrations were 2.6 times higher at the turn of the last century (ca. 1900) than at present. Although the DSi decrease has leveled out and at present there are only restricted areas of the Baltic Sea with limiting DSi concentrations, further declines in DSi concentrations will lead to widespread DSi limitation of diatoms with severe implications for the food web.  相似文献   

18.
Measurements of turbulence were performed in four frontal locations near the mouths of Block Island Sound (BIS) and Long Island Sound (LIS). These measurements extend from the offshore front associated with BIS and Mid-Atlantic Bight Shelf water, to the onshore fronts near the Montauk Point (MK) headland, and the Connecticut River plume front. The latter feature is closely associated with the major fresh water input to LIS. Turbulent kinetic energy (TKE) dissipation rate, ε, was obtained using shear probes mounted on an autonomous underwater vehicle. Offshore, the BIS estuarine outflow front showed, during spring season and ebb tide, maximum TKE dissipation rate, ε, estimates of order 10− 5 W/kg, with background values of order 10− 6 to 10− 9 W/kg. Edwards et al. [Edwards, C.A., Fake, T.A., and Bogden, P.S., 2004a. Spring–summer frontogenesis at the mouth of Block Island Sound: 1. A numerical investigation into tidal and buoyancy-forced motion. Journal of Geophysical Research 109 (C12021), doi:10.1029/2003JC002132.] model this front as the boundary of a tidally driven, baroclinically adjusted BIS flow around the MK headland eddy. At the entrance to BIS, near MK, two additional fronts are observed, one of which was over sand waves. For the headland site front east of MK, without sand waves, during ebb tide, ε estimates of 10− 5 to 10− 6 W/kg were observed. The model shows that this front is at the northern end of an anti-cyclonic headland eddy, and within a region of strong tidal mixing. For the headland site front further northeast over sand waves, maximum ε estimates were of order 10− 4 W/kg within a background of order 10− 7–10− 6 W/kg. From the model, this front is at the northeastern edge of the anti-cyclonic headland eddy and within the tidal mixing zone. For the Connecticut River plume front, a surface trapped plume, during ebb tide, maximum ε estimates of 10− 5 W/kg were obtained, within a background of 10− 6 to 10− 8 W/kg. Of all four fronts, the river plume front has the largest finescale mean-square shear, S2 ~ 0.15 s− 2. All of the frontal locations had local values of the buoyancy Reynolds number indicating strong isotropic turbulence at the dissipation scales. Local values of the Froude number indicated shear instability in all of the fronts.  相似文献   

19.
Inter-annual variability of hypoxic conditions in a shallow estuary   总被引:2,自引:0,他引:2  
Water quality data from two monitoring programs in the Pamlico River Estuary (PRE) were analyzed for dissolved oxygen (DO), salinity, temperature, and nutrient concentrations. Data were collected bi-weekly at 8 stations from 1997 to 2003 by East Carolina University and continuously at three stations from 1999 to 2003 by the U.S. Geological Survey. Hypoxic conditions were observed mostly in the upper to middle estuary, but the frequency of hypoxic events varied between years. During June to October in 1997–1999 (referred to as the oxic summers) bottom water hypoxia (DO < 2 mg l− 1) was found in 8.7% of the observations. By contrast, during June to October in 2001–2003 (referred to as the hypoxic summers), 37.9% of the total measurements had DO concentrations less than 2 mg l− 1. The more frequent and/or prolonged hypoxic conditions during the hypoxic summers were closely associated with stronger salinity stratification and greater loadings of nutrient and particulate matter.Salinity stratification appeared to be governed by patterns of freshwater discharge, and frequency of wind mixing events. The “oxic” summers were characterized by continuous low freshwater inflow (except one extremely high flow event due to hurricanes), stronger northeastward wind, and more frequent wind mixing events. In contrast, the hypoxic summers were characterized by frequent moderate freshwater inflow events, and fewer wind mixing events.The greater loadings of nutrient (nitrate, ammonium, and phosphate) and particulate matter during the hypoxic summers were primarily due to higher river discharges. At the head of the PRE, no significant differences were found in concentrations of nutrient and particulate nitrogen between the oxic and the hypoxic summers. In addition, chlorophyll a concentrations were averaged above 30 μg l− 1 (maximum 167 μg l− 1) during the hypoxic summers, significantly higher than those during the oxic summers (averaged around 15 μg l− 1).  相似文献   

20.
This study reconstructs climatic variability over the last 4700 yr in the NW Iberian Peninsula on the basis of lithological, sedimentological, biogeochemical, micropaleontological (diatoms and biosiliceous compounds) and AMS 14C analyses conducted in a gravity core retrieved from the Galician continental shelf. The core was recovered at the Galicia Mud Patch, a muddy sedimentary body highly influenced by the terrestrial supply of the Miño and Douro rivers, and thus controlled by the rainfall variations over the catchment area. River plume transports the lithogenic and continental-derived compounds to the shelf area allowing us to recognize several periods of terrestrial/marine influence. These periods are well correlated with the lithological units identified. Coarser sediments, high values of Ca/Al, low values of Fe, Al and lithogenic Si (LSi) are representative of the marine-influenced periods. These stages are related to dry conditions and winds coming from the NE under a NAO positive-like phase.Terrestrial-influenced stages are characterized by muddy sediments, with high content of Fe, Al and LSi, freshwater and benthic diatoms, continental-derived organisms (crysophycean cysts and phytoliths) and high amount of land-derived organic matter as reported by the C/N ratios. The influence of NAO positive- and NAO negative-like periods and solar activity are the two mechanisms quoted to explain the climatic variability during the last 4700 years.Proxies for the lithogenic input and terrigenous content (non-organic material) show an increase at around 2000–1800 cal. yr BP, linked to the warmer conditions and high precipitation patterns during the Roman Warm Period, and soil erosion due to forest degradation and other anthropic activities. A strong river flow event is recorded in shelf sediments during 800–500 cal. yr BP. A pervasive NAO negative-like period, and the high irradiance registered during the Grand Solar Maximum (GSM) controlled the precipitation and induced a high run-off and riverine influx during this event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号