首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
平潭海峡公铁大桥元洪航道桥为(132+196+532+196+132)m公铁两用跨海斜拉桥,桥塔斜拉索锚固区底部3层为索导管结构,索导管采用无缝钢管制造。由于所处地理位置为台湾海峡风口处,常年大风,施工要求在8级风下能正常进行索导管定位测量,且受环境影响控制点只能布设在斜拉桥边墩墩顶及塔柱下横梁顶。在8级风下对控制点进行晃动测试分析,分析不同测回数取均值后的坐标偏差限值、内符合精度及外符合精度,得出20测回取均值可满足索导管安装精度5 mm的要求。索导管安装过程中,对其结构尺寸进行检查验收并制作定位板,采用塔柱施工面高程传递、距离投影改正等技术,确保了索导管锚固点三维坐标偏差在5 mm内,索导管锚固点与出塔点中心坐标的相对偏差在3 mm内,精度满足规范要求。  相似文献   

2.
梅溪河大桥是长江支流梅溪河峡谷区内的一座特大斜拉桥,工程测量精度要求高。对测量而言,峡谷区地形陡峭复杂,高差大,通视条件差,长短边过渡等不利因素较多。为了覆盖整体工程的测量、放线工作,并确保工程测量精度,在峡谷区控制网的选型、测设、数据处理至关重要。斜拉桥索导管定位的准确性是索塔施工控制的重点与难点,索导管的定位精度是影响斜拉桥成桥质量的重要因素之一。索导管是通过空间三维坐标定位,而三角高程测量受垂直观测误差、边长测量误差、大气折光误差、地球曲率误差、仪器高、觇标高量测误差等诸多因素影响较大,精度难以控制,为了确保索导管定位的准确性,提高三角高程测量精度至关重要。主梁的施工测量质量直接决定着主梁的线形,而主梁的线形控制是主桥成桥的重要因素之一,也是测量施工的重点与难点。  相似文献   

3.
斜拉索主梁索导管的安装定位一直是斜拉桥主梁施工的难点,其安装精度将直接影响后期的穿索施工,同时会改变斜拉索的受力。斜拉索的受力状况直接影响主梁合龙时的线形及质量。本文根据济祁高速淮河特大桥的施工实践,介绍和探讨了斜拉索主梁索导管的定位施工和测控问题。  相似文献   

4.
为提高斜拉桥索导管空间定位的精度,进一步推动测量定位技术的实用化,对采用钢内导管装置的斜拉桥索导管精确定位技术进行研究。钢内导管是由一根半圆柱体形状的细长轴(中心线处开有微小V形槽)相连双半圆法兰盘的一种装置,其中一端与半圆法兰盘平齐,另一端穿过半圆法兰盘。斜拉桥索导管定位时,在初步定位的基础上,将钢内导管穿入索导管中,利用钢内导管将出塔点坐标和理论锚点坐标由虚点转化为实点,对索导管进行直接精确复测定位,再利用两坐标点所在空间直线方程对实测点进行判别。将该技术应用于台州市椒江二桥上,实践结果表明该技术能简单快速地实现斜拉桥塔端索导管的精确定位,精度能达到5mm以内。  相似文献   

5.
结合洞庭湖大桥的施工测量,探讨斜拉桥主梁施工过程中索导管精确定位的数学模型及方法,分析主梁索导管在动态施工过程中定位参数的变化规律.  相似文献   

6.
结合洞庭湖大桥的施工测量,探讨斜拉桥主梁施工过程中索导管精确定位的数学模型及方法,分析主梁索导管在动态施工过程中定位参数的变化规律。  相似文献   

7.
斜拉索索导管的安装定位一直是斜拉桥混凝土主塔和混凝土主梁施工的难点,其安装精度将直接影响到斜拉索的受力状况.而斜拉索的受力状况又影响到桥梁合龙时的线形.进而影响到斜拉桥的正常使用寿命.本文根据城闸大桥的施工实践,介绍和探讨了斜拉索索导管的定位施工和测控问题.  相似文献   

8.
该文结合马来西亚槟城二桥主桥施工实例,对斜拉桥主塔施工过程中索鞍安装定位施工工艺、索鞍劲性骨架预制步骤、现场整体安装及测量定位调整等进行了详细介绍。  相似文献   

9.
斜拉桥属于高次超静定结构,这种结构体系对每个节点要求十分严格,而在施工过程中受施工偏差、混凝土收缩、基础沉降、风荷载、温度变化等因素影响,节点几何尺寸及平面位置都有可能会发生变化,这都将会影响索塔结构内力的分配和成桥线形,因此从施工控制网的建立、观测与数据处理,到桥梁基础和上部结构的施工放样与检测,钢梁拼装过程中的形态测控等,整个测量工作对桥梁的建设过程显得尤为重要。而在整个斜拉桥施工测量中,索塔施工测量定位又是其中的重中之重。现以飞云江跨海特大桥索塔施工为实例,详细介绍其索塔施工测量相关技术,重点突出其索塔几何位置控制测量方法以及索导管的精确定位安装过程。  相似文献   

10.
主塔索导管高空安装与定位是斜拉桥施工中的重要环节,本文结合襄阳汉江三桥主桥施工,详细介绍了如何以劲性骨架为依托进行主塔索导管的安装和定位,定位托盘和定位板等辅助工具的使用有效地提高了定位速度和精度,提高了工效,降低了成本。  相似文献   

11.
李振伟  刘成龙 《公路》1998,(11):23-27
在理解斜拉桥拉索导管定位设计参数的基础上,提出一种测设与测量相结合的斜索导管测量定位的方法。该法与施工配合密切,具有快速、可靠和高精度的优点。  相似文献   

12.
卢鹏 《桥梁建设》2007,(A02):134-136
锚垫板与索道管定位是斜拉桥施工过程中精度要求很高的测量工作。介绍孝襄高速公路孝南互通立交无背索斜拉桥主塔锚垫板、索道管的空间直线定位原理,施工测量方法及精度分析。  相似文献   

13.
结合京杭运河改线工程中常金大桥钢索塔的安装施工,介绍了独塔无背索斜拉桥钢索塔的安装方法,并对钢索塔安装施工过程中塔吊基础的设计、索塔节段的吊装、测量定位等主要技术控制要素进行了总结。  相似文献   

14.
刘富民 《城市道桥与防洪》2020,(4):108-111,I0010
单塔无背索斜拉桥是一种造型独特、受力及结构复杂的斜拉桥。神舟友谊大桥无背索斜拉桥主塔为半椭圆弧门形塔,倾斜的塔身抵挡斜拉索传递的桥面荷载,组成了梁塔结构的平衡体系。主要介绍神舟友谊大桥主塔安装采用刚性组合支架安装的施工技术、主塔安装测量控制技术、主塔安装关键施工技术,为无背索斜拉桥的主塔安装施工提供有益的借鉴。  相似文献   

15.
针对大跨径叠合梁斜拉桥钢锚梁安装精度控制,为确保钢锚梁高精度安装施工质量,避免后期斜拉索安装过程中出现斜拉索与钢锚梁索导管干扰现象,因此钢锚梁安装过程中必须控制好精度,结合宜宾南溪长江公路大桥钢锚梁安装施工实践,就钢锚梁吊装方法及精度控制所采用方法进行论述,为同类桥梁施工提供参考。  相似文献   

16.
重庆红岩村嘉陵江大桥为高低塔双索面公轨两用钢桁梁斜拉桥,索塔斜拉索锚固采用钢锚箱形式。钢锚箱为箱形结构,最大节段尺寸为6.2m×2.2m×3.0m(长×宽×高),节段最重达26t,吊装高度达160m。首节钢锚箱索导管长达8m,跨越塔柱2个浇筑节段(标准节段高6m)。针对钢锚箱体积大、重量重、吊装高度高和首节钢锚箱索导管超长的特点,采用专用起重设备吊装钢锚箱节段,首节钢锚箱与索导管分离安装,首节钢锚箱索导管通过空间位置放样、初定位、精密定位确保三维坐标精度,采用L10角钢进行加强以防首节钢锚箱变形,剩余节段钢锚箱安装采用导向装置就位。施工中严格控制每节段钢锚箱的平面位置、高程、倾斜度、顶面平整度,实现了钢锚箱安全、优质、快速的施工目标。  相似文献   

17.
《公路》2017,(4)
索导管是悬索桥预应力锚固系统的重要组成部分,其安装精度将直接影响锚固系统的受力状况,从而影响悬索桥的正常使用寿命。分析驸马长江大桥北岸重力式锚碇索导管定位支架施工方法,其设计合理、安装精度满足设计及规范要求,为其他相似工程提供参考依据。  相似文献   

18.
卜东平  李玉宏 《上海公路》2011,(3):43-45,61
沪蓉西高速公路铁罗坪斜拉桥190m主塔为目前国内山区斜拉桥中最高的主塔,位于V字形山谷中,昼夜温差大,主塔施工受气候及环境影响大,施工控制测量是塔柱施工质量控制的关键之一。为了确保能够顺利地按照设计要求完成190m高主塔的施工,施工中通过研究国内其它高墩施工的测量技术,结合现场具体情况,总结出一套满足山区斜拉桥高墩测量的控制技术,特别深入研究探讨了对塔柱索导管采用GPS差分定位技术,供同类型桥梁施工借鉴。  相似文献   

19.
武汉二七长江大桥桥塔索道管精密定位方法   总被引:1,自引:1,他引:0  
为保证武汉二七长江大桥(斜拉桥)施工时索塔的几何形状及空间位置符合设计规范要求,通过布设精密测量施工控制网、构建三维坐标数学模型完成塔柱索道管定位。步骤如下:在岸上布设3个强制观测墩,和全桥控制网组成高精度加密控制网;在岸上的劲性骨架上安装索道管定位架、焊接索道管调整装置后,整体吊装并调整劲性骨架的位置,完成岸上初定位;在塔柱劲性骨架上设置控制点,建立独立坐标系进行索道管高精度定位测量。精度分析表明,该方法对索道管定位的测量精度完全满足±5mm设计的要求。  相似文献   

20.
本文以宜宾市南溪长江公路大桥索道管安装定位为实例,重点介绍全站仪自由设站及中间法三角高程用于本桥梁索塔索导管三维定位,保证了索导管安装误差在规范范围内,其施工方法可为同类型桥梁施工提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号