首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
转体施工法作为一种桥梁施工方法,由于其特有的施工优越性,使得其被广泛应用于斜拉桥索塔的施工之中。然而,由于斜拉桥索塔施工工序繁多和施工工艺复杂,加之需保证转体过程顺滑、稳定及精度要求。故为了降低施工期间风险,对斜拉桥索塔转体施工期进行结构安全风险评估是十分有必要的。本文依托某斜拉桥索塔转体施工为背景,基于ALARP准则桥梁风险矩阵方法,识别施工期间风险源,进行风险分析,为充分了解施工风险,制定相应的防范措施来控制和降低风险水平,以确保斜拉桥施工期安全。  相似文献   

2.
索塔是缆索承重桥梁中的一重要受力构件,型式多样、荷载条件复杂,其最终的应力状态同桥梁施工过程密切相关,且空间受力特性明显。以一实际斜拉桥索塔为背景,采用实体退化系列单元模拟了整个施工过程,对索塔结构的空间应力状态进行了分析,探讨了索塔根部截面竖向正应力随施工过程的变化情况。分析结果表明索塔结构的竖向应力空间特性明显,施工过程中应力变化复杂。空间分析弥补了平面分析的不足,其结果对保证索塔安全、完善索塔设计具有实际意义,所采用的分析方法值得推广应用。  相似文献   

3.
转体施工的宽桥面钢主梁斜拉桥通常适用于道路以小角度跨越既有铁路等大型控制点。斜拉桥索塔结构形式对桥梁造价、转体重量、施工便捷性和美观性等方面有较大的影响。以某独塔斜拉桥为工程背景,计算和比较了4种索塔结构形式,最终选用合适的花瓶形索塔(分离式下塔柱)形式。  相似文献   

4.
苏通长江公路大桥为主跨1088m钢箱梁斜拉桥,索塔锚固区采用钢锚箱结构,属国内首次.鉴于主桥结构具有跨度大、刚度小、非线性效应明显、受温度与风振影响显著等特点,因此上部结构采用几何控制法进行施工控制,而钢锚箱是实现几何控制的关键环节.文中介绍了苏通大桥索塔钢锚箱制造几何控制的具体方法与要点.  相似文献   

5.
随着中国综合国力和造桥技术的不断提高,结构新颖、外形美观的桥梁不断出现。南昌英雄大桥采用独柱斜塔扭索面钢混结合斜拉桥,在桥塔造型、斜拉索布置、桥梁施工等方面较普通斜拉桥都有很多的创新。该文对英雄大桥桥塔结构设计、索塔锚固区局部应力分析、斜塔施工过程中关键问题控制、优化等方面进行详细介绍,以期对类似结构设计提供参考。  相似文献   

6.
以某双塔双索面预应力混凝土斜拉桥为例,通过现场埋设监测仪器及有限元仿真分析两种方式对该桥梁索塔施工过程中的应力及应变进行了详细研究。通过对比实测数据及理论分析结果可知,该斜拉桥索塔在施工过程中受到诸多因素的影响,且每个施工阶段的影响因素不尽相同。因此在施工应力应变控制的过程中,应该通过有限元理论分析,找出索塔施工各个阶段影响应力应变的主要因素,然后针对其特点采取相应的工程措施,以便削弱或抵消不利影响,使各个施工阶段索塔受力均处于合理状态,从而保证施工质量和施工安全。  相似文献   

7.
大跨度钢桁架斜拉桥施工监控的任务为:在施工过程中对结构参数进行有效的识别,对施工状态进行预测,优化并调整可调变量,使施工系统始终处于控制之中,保证施工过程中和竣工后的桥梁结构线形和内力满足设计和规范的要求。本文以新疆果子沟斜拉桥施工监控为背景,建立大跨度斜拉桥施工控制全过程的几何控制体系,包括制造体系、实时测量体系、现场测试体系、施工控制计算体系、应力预警体系、设计计算与施工控制计算校核等组成部分,按照此体系开展施工控制工作,可以有效的保证工程的安全、准确和快速。  相似文献   

8.
斜拉桥属高次超静定结构,施工过程复杂,索力的施工控制与成桥状态具有相关性.索力的施工控制是将设计理论状态转变成实体受力的过程,是斜拉施工过程中最关键的控制技术之一,其主要目的是为了保证施工过程中结构的安全可靠,主桥线形合理、顺利合龙及成桥后结构内力合理.尤其是悬臂施工的斜拉桥,在施工过程中受到温度、收缩、徐变等因素的影响,使成桥后桥梁线形和内力的可调范围都比较小,因此需要对斜拉桥索力施工进行严格控制,以保证实现桥梁设计状态.以东合大桥为施工背景,浅谈斜拉桥索力分析及控制技术.  相似文献   

9.
为研究钢混叠合梁斜拉桥施工过程中不同设计参数对桥梁施工控制的影响,基于几何控制法的原理,以一座跨江大桥为研究对象,分别对结构自重、刚度等主要参数进行施工及成桥过程敏感性分析,明确了钢混叠合梁斜拉桥的结构力学行为特征及规律,明确了对主梁线形和塔偏等关键控制指标造成影响的敏感参数。  相似文献   

10.
以某一无背索曲塔曲梁斜拉桥为分析对象,针对桥梁结构特征,采用结构整体静力有限元分析桥梁极限状态及施工关键节点的整体与局部结构静力性能和动力特性,获得桥梁稳定性特征。研究结果表明:极限承载力作用下,桥塔混凝土、桥塔钢板、钢箱梁、边跨混凝土梁应力范围均满足施工标准;恒载作用下,索塔混凝土最大竖向压应力出现在内索塔与墩底连接处,在内塔底部出现最小压应力,主梁最大竖向变形出现在梁顶端位置;活载和风荷载作用下,外索塔在顺桥向荷载下产生最大变形,内塔底部产生局部最大拉应力;连接索塔削弱薄塔处顺桥向和横桥向最大拉应力均较大,因此,在设计施工中需要对该削弱薄塔区进行局部加强,避免出现结构失稳性破坏。  相似文献   

11.
张涛 《广东公路交通》2019,45(4):136-139
索塔结构是斜拉桥的主要承重结构,索塔的施工质量直接关系到斜拉桥主体结构的安全。结合广东省内最大跨径斜拉桥江顺大桥施工,介绍斜拉桥索塔施工控制的关键技术。  相似文献   

12.
结合京杭运河改线工程中常金大桥钢索塔的安装施工,介绍了独塔无背索斜拉桥钢索塔的安装方法,并对钢索塔安装施工过程中塔吊基础的设计、索塔节段的吊装、测量定位等主要技术控制要素进行了总结。  相似文献   

13.
砼斜拉桥在大悬臂施工过程中其变形及结构稳定性难以控制,尤其对于跨海湾的特大桥梁,在极端风荷载作用下更突出。文中以广东水东湾大跨度砼斜拉桥为工程背景,根据其主桥结构特点及当地台风情况确定临时墩设置原则;建立全桥精细化模型,对大悬臂状况下台风作用下边跨临时墩设置前后主梁和索塔的应力及位移进行分析,研究砼主梁及索塔的抗风安全性能。  相似文献   

14.
作为大跨度桥梁主要受力构件的索塔,随着高度的增加,其形态测控和几何控制难度也随之加大,索塔控制已经成为特大跨桥梁顺利实施的关键工序.该文针对苏通长江大桥索塔施工控制的技术总结,介绍该桥塔施工控制的方法,过程及实施成果.  相似文献   

15.
安庆长江大桥索塔中塔柱施工技术   总被引:1,自引:0,他引:1  
文中介绍了安庆长江大桥斜拉索塔中塔柱施工方案、施工要点,较为详细地说明了中塔柱横撑的布置、设计及结构的确定,实测资料表明整个索塔施工过程中中塔柱根部应力未超过设计容许值,可为今后同类斜拉桥索塔塔柱施工提供参考。  相似文献   

16.
针对施工期的超大跨度钢箱粱斜拉桥的结构力学行为对结构参数的敏感度问题,基于几何控制法的基本原理,以苏通大桥为研究对象,建立了考虑几何非线性效应的施工全过程有限元模型.当结构几何参数、刚度参数和荷载参数发生变化时,对施工全过程单参数敏感性进行了系统的分析.计算分析过程明确了几何控制法计算分析的要点,计算结果揭示了超大跨度斜拉桥的力学行为特点,并确定了影响主梁线形和索塔偏移的关键敏感性结构参数,为制造阶段和施工阶段控制容许误差的确定、误差修正及最优控制决策提供科学依据.  相似文献   

17.
为研究高墩多塔斜拉桥的抗震特性,以一座墩高178m的四塔斜拉桥为例,考虑材料和几何非线性,建立全桥有限元动力模型;选取长、短周期2类共80条实测地震波进行非线性时程分析;以4类能够反映斜拉桥响应特点的工程需求参数为对象,结合对数回归分析,对9种常用的地震动强度指标的可行性、有效性和适用性进行评价,并提出此类桥梁地震动强度指标的选择建议;结合各构件的损伤特点,合理定义支座系统、索塔、主梁和拉索的损伤指标;基于易损性分析理论,建立关键构件的易损性曲线,明确各类构件的易损位置,并对不同构件的损伤特性进行对比分析,进而提出改善此类桥梁抗震性能的思路。研究结果表明:高墩多塔斜拉桥不宜沿用常规桥梁的地震动强度指标进行地震响应预测,而应针对不同情况采用基本周期谱加速度或峰值谱位移;纵向地震作用下,支座系统、主梁和拉索均呈现出较高的损伤概率,而索塔的损伤相对较低;主梁的损伤主要集中在中跨1/4和3/4截面处,拉索的损伤主要集中在端锚索和中跨的长索;由于索塔的损伤远小于其他构件,而易损构件都是由于结构较大变形引起的,因而在此类结构的抗震设计中,控制位移或变形较控制索塔内力更加关键。  相似文献   

18.
结合宝鸡市代家湾单塔无背索斜拉桥主塔的施工实践,介绍了索塔的施工工艺、索塔整体提升模板体系以及索塔线形控制等,还介绍了该工程具体的施工工况和详细的工艺流程,包括整体提升模板施工,对同类桥梁的施工具有借鉴作用。  相似文献   

19.
矮塔斜拉桥是桥梁结构体系中的重要组成部分,在实践操作中对工艺操作与组织管理存在较高的要求。因此,掌握矮塔斜拉桥施工关键技术对保证施工质量具有重要现实意义。基于此,以灵江大桥为例,结合矮塔斜拉桥结构特点与现场施工条件,就分丝管安装技术、索塔浇筑技术、主梁混凝土浇筑技术、索张拉控制技术等矮塔斜拉桥施工关键技术进行了分析,以供参考。  相似文献   

20.
岳刚 《公路与汽运》2010,(4):168-171
结合实体工程,分析了斜拉桥主梁梁重施工偏差对桥梁结构力学状态的影响程度,探讨了梁体施工节段重量偏差对成桥后主梁与索塔线形、内力状态及拉索索力的影响。结果表明,主梁梁重偏差对主梁成桥线形、索塔成桥塔偏的影响较大,在结构计算、施工监控时需根据施工情况及时调整结构容重参数,避免因结构计算失真造成施工质量问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号