首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
传统控制方法是通过规划算法采集环境信息,但由于位置因素复杂,无法准确获取无线通信范围。为此,提出基于PLC的舰船智能巡检机器人优化控制方法。运用PLC算法,选择无线通信方式,设置边界条件,求解覆盖区域的磁感应强度。再依据能量转移原理,实现舰船智能巡检机器人智能化连续任务。完成上述操作步骤后,设计舰船智能巡检机器人巡检模式处理数据、转换数据、存储数据,实现优化控制。最后,在实验中设置实验装置,检测2种方法所测的负载功率,是否能够找到最合适的无线通信范围。实验结果表明,所建方法测得的负载功率会随着线圈间距变大,逐渐增大,从而找到最合适的无线通信范围。可见,所提方法更符合设计需求。  相似文献   

2.
针对当前舰船航行轨迹跟踪精度的难题,设计了基于智能优化算法的舰船航行轨迹跟踪方法。首先结合舰船航行轨迹跟踪的特点,将舰船航行轨迹跟踪问题转换为一个多目标优化问题,然后引入智能优化算法对网格点的多目标优化问题进行求解,找到最优的舰船航行轨迹跟踪方案,最后进行舰船航行轨迹跟踪仿真测试,测试结果表明,智能优化算法获得了比传统算法更优的舰船航行轨迹跟踪精度,而且舰船航行轨迹跟踪的速度高,具有较好应用价值。  相似文献   

3.
针对多自主式水下航行器轨迹跟踪控制中的不确定性问题,研究多自主式水下航行器轨迹精准跟踪控制方法。构建基于灰色预测的轨迹精准跟踪控制模型,利用灰色预测模型预测航行器航向角,构建一元多项式回归模型,拟合航行器初始航向角同预测航向角间的残差,优化灰色预测模型,提升航行器航向角预测精度。将航向角预测结果代入PID控制器内,通过计算航向角控制率确定位置误差、速度误差与加速度误差,通过控制上述误差实现航行器轨迹准确跟踪控制。实验结果显示该方法可在航行器不同运动特性下准确跟踪轨迹,并具有较好的控制效果。  相似文献   

4.
现有航向控制主要使用PID控制器,其主要应用于线性控制问题,而航向控制具备一定的随机性,导致常规航向控制方法稳定性较差,威胁舰船航行安全性,引入人工智能技术提出舰船航向混合自动控制方法研究。设置假设条件构建舰船运动模型,以此为基础,对运动参量进行无因次化处理,避免量纲不同对模型产生不利影响,引入人工智能技术——神经网络算法与PID控制理论进行混合应用,制定神经网络PID控制程序,执行程序即可实现舰船航向的混合自动控制。实验数据显示:在常数大于2条件下,应用人工智能技术后获得的航向控制稳定性指标大于平均水平,说明人工智能技术应用性能较好。  相似文献   

5.
常规舰船控制器的控制机理为"事后调节",这样会使舰船在定位过程中出现超调,导致波动较大,控制效果不好。因此设计一种基于模糊算法的舰船控制器自动优化方法,首先建立舰船运动模型,分析舰船运动自由度,分别在固定坐标系和舰船坐标系中表示出舰船的运动方式,为舰船的运动控制提供理论基础;随后基于模糊算法对舰船控制器进行优化,分别设计舰船控制器在模糊控制中的规则、模糊隶属度函数和控制过程中输入输出值,完成模糊算法的舰船控制器自动优化研究。在仿真实验中,分别使用常规控制器与经过优化后的控制器进行实验,实验结果表明,经过优化后的舰船控制器在首摇、纵向、横向三方面对舰船有很好的控制作用,与传统的控制器相比,几乎不存在波动和超调,能够稳定保持在期望的舰船位置上。  相似文献   

6.
传统舰船航行自动控制功能主要通过算法对定义舰船轨迹数据与舰船航行数据综合分析计算,根据计算结果对PID自动控制器下达控制指令来完成自动控制操作。此种控制模式受到算法定义逻辑限制存在一定的控制误差,无法真正做到舰船航行的精准控制。为解决上述问题,提出人工智能技术的舰船航行自动控制研究。首先对舰船航行轨迹进行模型计算,接着对舰船PID控制数据进行模型计算。最后,通过人工智能技术对航向轨迹与PID控制数据进行关联计算,得到精准的舰船航行控制数据。通过对比实验对提出的控制方法与传统控制方法进行对比,数据证明提出方法的控制精准度高于传统自动控制系统。  相似文献   

7.
基于旅游类舰船的消费需求不断增加和机器人产业的逐渐普及,设计一种应用于游轮上的船用服务机器人。面对船舶复杂的工作环境等特点,该机器人位置跟踪和姿态跟踪控制显得尤为关键。首先根据驱动原理建立运动学模型,其次借鉴Backstepping方法设计虚拟控制的虚拟反馈,并结合Lyapunov函数构造出具有全局渐近稳定的轨迹跟踪控制器。最后并通过仿真实验证明该法具有稳定性好、响应时间短和稳态误差较小的优点,对机器人技术应用于船舶方向的研究产生了一定的积极影响。  相似文献   

8.
常规系统搭建无线控制网络时,节点发射功率未达到最佳,导致数据传输的网络吞吐量较低。针对这一问题,设计嵌入式技术的舰船无线网络智能控制系统。硬件方面,嵌入传感器至微控制器,通过外围IO控制、无线通信等,组成系统框架;软件方面,抽象处理网络节点使用信道,通过节点相互博弈,确定最佳发射功率,输出惯性力矩和电机驱动的射出功率,智能控制舰船航速航向。仿真无线网络拓扑结构,设置对比实验,结果表明,在互访业务和Internet业务2种模式下,设计系统的网络吞吐量,明显高于常规系统,拥有更好的网络传输性能。  相似文献   

9.
随着AI控制技术的发展,智能机器人的应用领域在不断扩展,针对传统舰船导航系统航迹精度控制差的不足,设计一种基于机器人的舰船智能导航系统。智能导航系统的硬件部分由AMI1086芯片、FPGA电路控制模块、AIS信号收发模块、GPS导航模块和数据存储模块等部分构成,并给出基于机器人控制的舰船导航系统的主控程序,和用于航向纠偏的脉冲信号累计控制算法,以实现对舰船海上航行的精确控制。仿真结果表明,提出系统设计在航迹偏差方面要明显优于传统系统,有助于保证舰船的安全行驶。  相似文献   

10.
本文针对考虑模型不确定性和时变外界环境扰动的水下机器人轨迹跟踪问题展开研究。首先基于水下机器人水平面运动学和动力学方程,结合有限时间控制方法设计一个有限时间扰动观测器用于对总扰动进行实时估计。随后基于反步滑模控制完成带扰动观测器的轨迹跟踪控制律设计,并采用二阶滤波器对虚拟控制信号进行过滤,增设滤波补偿系统用于保证滤波信号的精度。选择高增益扰动观测器和传统反步滑模控制器分别作为扰动观测器和控制器的对比项。最后在Matlab Simulink平台中进行了轨迹跟踪仿真实验。仿真结果表明,所设计的扰动观测器能够对总扰动实现快速且准确的观测估计,且水下机器人能够对目标轨迹能实现较好的跟踪效果。本文所设计的控制器可以使水下机器人快速地跟踪上目标轨迹,且相较于传统反步滑模控制器有着更小的跟踪误差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号