首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
介绍高速铁路列车接近锁闭区段长度的计算模型,并在CTCS-2级和CTCS-3级列控系统下,计算CRH2型和CRH3型动车组在不同坡道下的最短接近锁闭区段长度和人工解锁进路的最短延迟解锁时间。最后为满足列车高效运行的安全性,还提出应尽快修订《列车牵引计算规程》,补充高速列车的运行参数和在部级颁发的有关文件中,明确列车最大常用制动距离限值的建议。  相似文献   

2.
接近锁闭区段是判断进路是否需要延时解锁的重要依据.提出一种通过中心控制单元控制人工紧急进路解锁的方式,并着重介绍了动态接近锁闭区段计算模型,能有效缩短接近锁闭区段的长度,避免不必要的进路解锁延时,从而提高效率,具有一定应用价值.  相似文献   

3.
通过有轨电车运行场景分析,对紧急进路延时解锁时间和接近锁闭区域长度计算进行了理论分析,构建了安全模型,提出了紧急进路延时解锁时间需要满足的7点基本条件,和接近锁闭区段长度需要满足的9点要求。工程项目的实施结果表明,上述安全模型研究符合工程项目的实际需求和工程要求。  相似文献   

4.
梁冠 《铁路技术创新》2011,(Z1):126-127,129
1 CTCS-3级运行中与GSM-R的DSU模块相关的问题武广高速铁路运行的是我国自行生产、拥有完全自主知识产权的CRH2和CRH3型"和谐号"高速列车.在CTCS-3级列控系统控制下,列车能以350 km/h平稳运行,行车间隔可达3min.CTCS-3级列控系统通过信号无线闭塞中心(RBC)设备实现,而保证RBC设备向动车发送CTCS-3级控车交互信息的则是GSM-R系统.移动交换中心( MSC)作为GSM-R系统中电路域的核心,一方面通过有线方式连接RBC设备,采用PRI信令;另一方面连接无线子系统,从无线侧获取动车车载OBC设备消息,使RBC与OBC间实时信息交互,实现CTCS-3级控车.  相似文献   

5.
主要介绍CTCS2-200C型车载列车控制系统的功能、系统组成、控制原理和主要控制模式,该系统已分别在"和谐号"200km/h动车组CRH2和CRH5上装车使用,满足CTCS-2级规范要求,运行状态良好.  相似文献   

6.
列车进路接近锁闭状态对列车冒进信号后的安全防护起到重要作用。现有列车进路接近锁闭处理逻辑沿用传统继电联锁的设计原理,能满足常见应用场景的需求,但不能适用于接近锁闭区段延长至后方两段及以上进路的场景;此外,在特定故障场景下,还存在列车进路错误转为接近锁闭状态的缺陷。为此,在分析现有继电电路逻辑缺陷的基础上,提出一种改进的列车进路接近锁闭区段延长处理方法。文章介绍继电电路实现接近锁闭的缺陷及改进后接近锁闭延长方法的实现过程,详细阐述其处理逻辑。该方法能适用于接近锁闭区段延长至后方两段及以上进路的应用场景,规避了人工编制接近锁闭处理逻辑带来的风险,解决了进路内道岔失去表示后列车进路错误转为接近锁闭状态的问题。  相似文献   

7.
CTCS-3级列控车载设备高速适应性关键技术   总被引:1,自引:0,他引:1  
从CTCS-3级列控系统工程建设角度出发,对包括基于多路速度传感器数据融合的测速测距策略、列车制动模型及CTCS-3/CTCS-2级动态转换机制等CTCS-3级列控车载设备高速适应性关键技术进行研究。根据不同类型测速传感器的特点,采用车轮速度传感器与雷达相结合的方式实现列车速度的安全测量,并运用联合卡尔曼滤波理论提出基于多路传感器数据融合的测速测距算法策略。结合列车移动体的控制特点,在国际铁路联盟UIC 544—1标准的基础上,提出1种改进的分段式减速度计算的列车制动模型,可兼顾行车安全和效率。针对列车运营模式的兼容性与可靠性,采用兼容CTCS-3级和CTCS-2级的双模冗余设计,使CTCS-3级列控车载设备同时具有CTCS-3级控车功能和CTCS-2级控车功能,并通过输入信息共享和等级转换时信息交换等技术手段,实现CTCS-3/CTCS-2级之间的平滑动态转换。研究成果已在武广高速铁路上实施,满足了列车高速安全运行的要求,并提高了等级转换时的列车运行效率和旅客舒适度。  相似文献   

8.
办理取消总锁闭引导接车时,电路上存在缺陷,先解锁道岔,后关闭信号,列车有可能冲进解锁的区段,造成行车事故。介绍了如何改进电路,使总锁闭引导接车电路更加严密,从电路上保证行车安全。  相似文献   

9.
石先明 《中国铁路》2012,(12):56-61
分析我国CRH系列动车组制动系统的技术特点和故障分类,以及CTCS-2级、CTCS-3级列控系统的技术特点和各种控车模式的安全性能;通过理论计算,进一步分析只有部分制动力的动车组在ATP完全监控模式下继续运行到站外准备停车和站内侧线接车两种运营场景的安全性与站外线路坡度之间的关系.提出让ATP计算用的理论制动力时刻保持不大于动车组实际剩余制动力的完全解决方案.  相似文献   

10.
对仅装备200H型(CTCS-2级)车载ATP设备的动车组运行于CTCS-3级地面区段时,车载DMI报应答器数据缺失问题的原因进行分析,并提出了解决对策。  相似文献   

11.
在CTCS-3级和ETCS-2级列控系统中,车载设备基于参考应答器确定列车位置和运行方向,向无线闭塞中心报告列车位置,无线闭塞中心根据列车的位置向列车发送行车许可等控车信息,共同保障高速铁路列车安全高效运行.介绍基于参考应答器计算列车位置和方向的基本概念、基本原理和计算方法;阐述车载设备位置报告中的位置和方向的基本概念...  相似文献   

12.
武广高铁是双线高速铁路,采用基于GSM-R无线通信平台的CTCS-3级列控系统,车载ATP与地面RBC之间通过GSM-R网络进行列控安全数据双向传输.车-地间数据信息传输可靠性直接关系到高速列车的行车安全和运输效率,车-地间通信中断或无法正确接收数据,列车控制系统会自动由CTCS-3级降为CTCS-2级,速度减至300km/h以下,会对全线列车正点率、运行调度、行车秩序造成极大影响.CTCS-3级降为CTCS-2级的原因多种多样,采取何种手段分析CTCS-3降级的异常现象,进而找到原因,减少甚至避免此类现象发生是铁路管理部门和维护部门的目标.  相似文献   

13.
CTCS-3级列控系统通过GSM-R无线网络实现列车与地面无线闭塞中心(RBC)之间的双向信息传输,还具备CTCS-2级列车运行控制功能.CTCS-3级列控系统的GSM-R系统设计要求实现GSM-R车载网络接入终端设备,该设备应满足列车在350 ~ 400 km/h运行时速下,最高9600 bit/s的列车安全数据与地面RBC间的实时双向传输[1],同时要求数据传输链路实现无缝连接,数据传输安全、可靠、实时.  相似文献   

14.
针对采用CTCS-2级列控系统的高速列车在已建成高速铁路长大下坡地段限速运行的问题,通过理论计算分析列车在长大下坡道上运行时坡度、列车运行速度、监控制动距离、闭塞分区长度以及列车追踪间隔时间之间的相互关系;结果表明这5个参数之间存在十分紧密的关系:下坡道越大越长、列车运行速度越高,监控制动距离就越长,要求的闭塞分区长度也越长;监控制动距离及闭塞分区越长,列车追踪间隔时间也越长;因此按照目前CTCS-2级列控系统的控车条件,在已建成高速铁路长大下坡地段要同时实现设计的列车运行速度和追踪间隔时间是困难的。进一步对CTCS-2级列控系统的参数配置进行分析,确定列控系统的线路坡度取整及计算的监控制动距离冗余过大也是导致高速列车在长大下坡地段限速和难以实现设计追踪间隔时间的重要影响因素。建议规范列控车载设备制动参数的取值及监控制动距离的计算方法,科学合理地制定列控系统的线路坡度偏安全侧取整及归档的标准。  相似文献   

15.
轨旁设备是列车控制系统中的重要组成部分,它可为列车控制系统提供地面应答器信息和轨道电路信息,以保证列车安全可靠地运行.本文主要对CTCS-3级列控系统中的轨旁设备进行研究,在CTCS-3级列控系统仿真平台的基础上,设计并实现了轨旁设备仿真子系统,最终达到了测试CTCS-3级列控设备的目的.  相似文献   

16.
高速铁路列车间隔时间的计算方法   总被引:1,自引:0,他引:1  
与普速铁路按固定闭塞方式组织列车追踪运行的控车模式不同,高速铁路由于装备了CTCS-2/3级列控系统和调度集中设备,故采取以车载信号作为行车凭证、按一次连续速度模式曲线监控高速列车运行的控车模式.基于高速铁路的这一控车特点,综合考虑列车的长度、运行速度、常用制动距离、安全防护距离、车站作业时间和闭塞分区长度等影响因素,借鉴普速铁路列车间隔时间的计算方法,给出高速铁路列车间隔时间(4种追踪间隔时间和7种车站间隔时间)的定义及其计算方法,为制定规范和统一的高速铁路列车间隔时间计算办法提供理论依据.  相似文献   

17.
CBTC系统中计算机联锁系统功能的研究   总被引:1,自引:0,他引:1  
描述在CBTC系统中提供给联锁系统的有关车列的信息,并根据这些信息分别从区段检测、进路选排、信号显示、进路锁闭、接近判断和人工解锁、其他运行辅助功能几方面对联锁功能的变化进行分析和研究。  相似文献   

18.
装备CTCS-3级列控车载设备的列车从CTCS-2级线路向CTCS-3级线路运行时需进行CTCS-2/3等级转换,在转换过程中车地建立无线通信连接时的列控数据交互,需经过物理层、链路层、传输层、安全层和应用层等,任何一步失败,都会导致列车无法转换到CTCS-3等级运行。从CTCS-2/3级等级转换失败案例中选取车载未发送SABME帧、车载发送多条SABME帧、RBC收到多条M155消息包等典型问题进行分析,分别从车载、网络和地面3个方面提出针对性的解决措施,可为类似问题的处理提供借鉴。  相似文献   

19.
随着运营速度达到了350km/h的郑西、武广铁路开通运行,中国铁路进入了高速发展时期,列控也进入了CTCS-3级基于通信的列控时代。CTCS-3级列控系统RBC(Radio Block Center)子系统是铁路信号列车控制中一个基于无线通信的实时控制系统,其控车功能是CTCS-3级列控系统的核心组成部分。在高速铁路线上,所有高速列车的运行均由无线闭塞中心RBC控制。本文针对列车异常呼叫LKDR-S型RBC的特殊场景进行了分析。  相似文献   

20.
采用复杂网络理论和方法,以CRH3型动车组为例,通过构建我国高速列车部件之间的维修关系网络,计算和分析该网络的节点平均度、平均路径长度、网络密度及网络集聚系数,从而揭示该网络的拓扑特征.研究结果表明:CRH3型动车组部件维修关系网络的平均路径长度较短,网络密度较大,且节点度的分布服从指数分布,是一个小世界网络;为利于高速列车投入运营后的维修资源分配和维修策略制定以及降低维修费用,在高速列车设计阶段应该考虑降低高速列车维修时部件间的依赖关系;对于节点度较高或是节点集聚系数较大且影响到列车安全运行的部件,应加大维修资源的分配力度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号