首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对我国大多数中小城市信号交叉口交通检测数据条件及基于此数据条件下存在的信号交叉口排队长度估计精度不高问题,研究了基于单截面低频定点检测数据的信号交叉口排队长度估计模型.利用时间占有率与流量、速度之间的函数关系对长排队(排队长度超出检测器位置)进行识别.根据信号配时数据切分低频检测器数据,并与信号配时数据匹配.基于交通波理论,通过关键点的判别求取周期最大排队长度.以青岛市山东路-江西路南进口为例进行仿真和实证验证.结果显示,长排队的识别精度达到了90% 以上,不同饱和度下(低、中、高)的信号交叉口排队长度估计精度均达到了80% 以上,其中,中、低饱和度场景下排队长度平均绝对误差小于20 m/cycle,高饱和度场景下排队长度平均绝对误差小于45 m/cycle.   相似文献   

2.
为了研究如何结合移动检测数据来确定交叉口排队长度,并以此来衡量交通拥堵程度的问题,利用车辆行驶轨迹,分析了通过交叉口车辆的排队特点。根据车辆在队列中的不同排队位置,分车辆通过交叉口时所存在的A,B,C这3种位置,建立了面向延误最小的排队长度估计模型。其中,通过虚拟线圈检测器后开始减速停止在停车线前的A位置车辆排队估计模型基于基本延误模型;减速进入虚拟线圈检测区域停车的B位置车辆排队估计模型基于简化车辆跟驰模型,对可获得车辆行驶轨迹的网联车减速过程进行了重建;减速停止在虚拟线圈检测器前的C位置车辆排队估计模型基于LWR消散模型以及交通流理论算法,并利用网联车车辆行驶轨迹数据进行了加速过程的重建。在此基础上,根据不同位置车辆与队尾网联车的距离不同,对其到达率赋予不同的权重,计算总的排队长度。最后,通过图新地球地图软件投影并筛选车辆在案例交叉口的车辆行驶轨迹,利用微观交通仿真软件VISSIM对本研究的模型进行仿真验证。结果表明,排队长度估计模型与真值的最大误差为12.4%,最小为2.2%,平均误差为8.75%,方差为12.595%~2,绝对与相对误差均保持在可接受范围以内,说明基于车辆行驶轨迹的信号交叉口排队长度估计模型能够较为有效地估计城市道路交叉口的排队长度。  相似文献   

3.
针对城市道路交叉口的特点,探讨了交叉口的设计原则、改善方法与评价指标,然后结合宁波甬余线拓宽改造实例,用VISSIM模拟了2个典型交叉口并对比分析改建前后的交通特性,结果表明改建后的交叉口各项交通指标如停车延误时间、平均排队长度、平均毎车延误时间、最大排队长度均优于改建前。  相似文献   

4.
排队长度是评价信号控制交叉口运行状态的重要参数之一。现有大多数基于抽样车辆轨迹数据的排队长度估计方法可以实现周期级排队长度估计,但是需要信号配时、渗透率或车辆到达分布等实践中难以获取的输入信息。此外,这类方法在低渗透率条件下往往难以确保估计结果的准确性和可靠性,极大地限制了其实用性。因此,提出一种抽样车辆轨迹数据驱动的时段级信号控制交叉口排队长度分布估计方法,可不依赖任何交通流理论模型和前述输入信息实现排队估计。首先,通过理论推导可以证明时段内抽样车辆的停车位置分布和排队长度分布之间可互相转化;然后,提出一种扩展的核密度估计方法来拟合并平滑抽样车辆停车位置分布,从而有效地适应不同日期和周期的轨迹叠加所带来的波动,提高方法的适用性;最后,基于前述推导和拟合的停车位置分布实现时段排队长度分布、平均排队长度和百分位排队长度估计。分别采用仿真和实证数据对上述方法进行验证和评价。结果表明,通过叠加5 d相同时段的抽样轨迹数据,15 min的平均排队长度估计误差仅为1.59 veh,相对误差仅为9%。同时,面向不同分析时长,只要给定超过100 veh抽样车辆的观测样本,无论渗透率高低,所提出的方法在定时或自适应信号控制交叉口都可实现时段排队长度分布的准确估计,其成果可进一步用于信号控制交叉口运行可靠性评估以及多时段定时信号控制的鲁棒优化。  相似文献   

5.
城市区域交通具有非线性、动态时变性、不确定性的特点,难以建立精确的数学模型.据此,针对小区域交叉口群过饱和状态,研究了基于模糊控制的信号协调优化方案.将现状交通控制下的交叉口群进口道最大排队长度和平均延误作为模糊控制的输入变量,将交叉口绿灯时间调整量作为输出变量,利用模糊C均值聚类获得输入变量的模糊集合和隶属度函数,通过一级模糊控制器和二级模糊控制器分别对区域交叉口群信号进行协调控制,达到减少区域最大排队长度和平均行车延误的目的.通过对武汉徐东商圈过饱和交通状态下的交叉口群进行多次协调控制,并对现状信号方案和协调信号方案进行Vissim微观仿真,交叉口群最大排队长度平均值由201 m减少为63 .6 m ,平均行车延误由110 .62 s减少为22 .68 s .   相似文献   

6.
为有效评价单交叉口处的运行状态,从而为交通管控方法的制定提供依据,研究了一种基于多指标融合的单交叉口运行状态实时评价方法.通过研究视频检测技术可获取的实时交通参数,确定了流量比、车速比、空间占有率和排队长度比4个评价指标.运用层次分析法计算出各指标权重;借鉴可拓物元法框架,构造交叉口待评物元矩阵,计算其关联系数,结合各指标权重,得到综合关联度,即交叉口运行状况评价得分.以徐州丰县的交叉口为例,运用Vissim仿真获取不同交通状态下的交通参数,应用上述方法进行交叉口运行状态评价,结果显示该方法能有效反映交叉口运行状况,具有良好的实时性和应用可行性.   相似文献   

7.
排队长度是衡量交叉口性能的重要指标,也是优化交叉口信号配时的关键依据.本文利用浮动车数据建立基于队尾浮动车位置的信号交叉口排队长度估计模型,以队尾浮动车位置为基础项,采用加权平均到达率表示队尾浮动车之后排队车辆的到达率,从而计算信号周期内车辆最大排队长度.算例显示,模型对于队尾浮动车较早进入排队的情况,排队长度估计平均误差相对较大,但随着队尾浮动车进入排队时间的推迟,模型估计值的平均相对误差逐步降低.当队尾浮动车在红灯结束的1/10时间内排队的情况,平均相对误差仅为15%,说明对于队尾浮动车接近红灯结束时到达的情景,模型估计更为准确.  相似文献   

8.
合理的交通信号灯控制方案能减少交叉口处的排队长度,缓解交通拥堵问题.路口交通流具有非线性、时变性、不确定性等特点,对其建模困难,从而导致无法借助其精确的数学模型来优化交通信号控制方案.本文将深度强化学习方法应用到交通信号控制问题,深度强化学习Agent以减少路口处的排队车辆总数为目标,通过观察交叉口处所有入口车道的状态进行相位控制;使用SUMO仿真平台对本文提出的控制方法进行了仿真实验.实验结果表明,相较于定时控制方法,本文提出的基于深度强化学习的控制方法能显著减少交叉口处的排队车辆数,缓解交通拥堵.  相似文献   

9.
为了解决过饱和状态下短连线的信号交叉口路段长度对延误影响的问题,推导出了基于短连线的过饱和信号交叉口最大延误模型。首先分析经典延误模型的盲区:在连接短连线信号交叉口车辆排队长度达到路段长度后,排队车辆就不能再增加;然后利用排队长度与延误关系推导出适用于该状态下的延误模型,并且提出当短连线相连2个交叉口信号相位差为0时所计算出来的延误是最大延误;最后通过算例对比了提出的延误模型与定数理论延误模型。结果表明:路段长度限制对于过饱和状态下连接短连线的信号交叉口延误的计算有很大影响,所提出的方法能够有效解决这一问题。  相似文献   

10.
针对城市老城区多路畸形交叉口的交通组织与渠化设计问题,结合交叉口的交通流线特征和冲突理论,以湖南益阳市资江一桥北广场七路畸形交叉口为例,分析多路畸形交叉口存在的问题及拥堵成因;说明多路畸形交叉口交通组织渠化原则和渠化设计方法,根据该交叉口的特征设计渠化组织方案,并通过VISSIM仿真对渠化改善前后的交叉口排队长度和延误进行评价,分析渠化改善效果。  相似文献   

11.
针对目前信号交叉口运行评价指标估算模型大多需要人工采集、输入多元交通参数,且假设条件较多的局限,考虑到现状评价方法不能有效支撑交叉口绿灯时间分配失衡、车道功能划分不当等问题甄别及交叉口信号控制多方案选择与优化,依据多源轨迹数据特征及交叉口车辆运行特性,论证了基于大样本车辆轨迹数据批量提取排队车辆交叉口通行时间、初始排队长度的技术可行性,提出了基于交叉口通行时间、排队长度、二次停车率的信号交叉口运行评价体系。  相似文献   

12.
针对交叉口进口道交通状态的模糊性和不确定性,在综合考虑影响进口道交通状态因子的基础上,选取到达率、排队长度、信号周期、饱和度和车道数为预测交叉口进口道交通状态的影响因子。采用判别分析法中的Fisher判别法,利用调查得到的样本数据建立了交叉口进口道交通状态预测模型,并用调查得到的验证样本进行验证,结果表明利用Fisher判别法能够有效的进行交叉口进口道交通状态的预测。  相似文献   

13.
设计了一种无信号灯的交叉口车辆协调控制策略,该策略将交叉口车辆通行控制问题转化为以最大流量为目标的整数规划问题,通过求解该问题获得最佳的通行策略达到车辆安全高效通过交叉口.与定时控制和自适应控制策略在各种交通负载下的仿真对比表明,所提出的协调控制策略能明显降低交叉口车辆的平均停车等待时间、平均排队长度和停车率.   相似文献   

14.
基于比功率法的信号控制交叉口排队车辆尾气排放估计   总被引:1,自引:0,他引:1  
为了优化信号控制参数以降低机动车在交叉口上的尾气排放,分别根据排队车辆的减速工况、怠速工况、加速工况,按照比功率法建立了一种新颖的反推估计方法,定量估计信号控制交叉口前排队车辆的尾气排放总量,并建立了信号控制参数优化的尾气排放评价依据,最后应用建立的模型对某个单点定时信号控制交叉口前排队车辆的尾气排放进行了估计.研究结果表明:该方法能依据比功率计算公式反推出加速过程和减速过程经历的所有比功率区间对应的时间长度;可根据车辆的到达和离去特征、信号配时参数计算每周期的总停车次数和平均停车延误,以此作为受信号控制影响的停车车辆总数及怠速工况对应的时间长度;应用该方法估计尾气排放是可行的.  相似文献   

15.
针对过饱和交叉口的交通溢流现象,研究了一种基于优先度规则的交叉口反溢流动态控制方法.依据溢流交叉口上下游相邻路段的排队情况和上下游相邻交叉口的信号灯状况,提出溢流交叉口各流向的需求性系数和可行性系数,综合考虑需求性系数和可行性系数确定相位优先度,基于数据驱动思想,采用熵权法计算各指标权重,避免经验选取权重的主观性,并采用模糊理论对周期时长进行确定.以NEMA双环结构为基础制定优先度规则,以此确定动态相位组合及相序排列.以北京市平乐园交叉口为例进行仿真验证,反溢流动态控制的仿真结果相比定时控制,平均排队长度降低21.73%,平均排队时间下降10.12%,表明该方法可有效缓解交通溢流现象.   相似文献   

16.
近年,基于网联车辆轨迹数据的交通管控与服务研究方兴未艾。其中,信号控制交叉口排队长度估计备受关注。然而,在低渗透率条件下,单个周期内轨迹稀少且提供的交通信息十分有限。现有研究仅以当前周期内网联车辆轨迹数据为输入,难以获得准确且可靠的周期级排队长度估计结果。因此,融合利用历史网联车辆轨迹数据提供的车辆到达和停车位置信息以及当前周期内实时观测的网联车辆排队信息,提出一种基于最大后验概率的周期最大排队长度估计方法。首先,依据历史轨迹数据的停车位置信息,估计排队长度的先验分布;其次,依据历史轨迹数据的车辆到达信息,估计周期内车辆的历史到达分布,并结合周期内最后1辆排队网联车辆的到达时刻与停车位置,构建排队长度似然函数;最后,基于贝叶斯理论,结合前述先验分布与似然函数,推导周期排队长度的后验分布,并采用最大后验概率方法实现周期最大排队长度的估计。仿真结果表明:所提方法在不同饱和度和渗透率条件下,均优于现有的方法;即使在车辆轨迹数不超过1 veh·周期-1的低渗透率条件下,所提方法的平均绝对估计误差也不超过2 veh·周期-1。实证结果表明:在渗透率仅为8.96%的条件下,所提方法的平均绝对误差为2.12 veh·周期-1,平均相对估计误差为12.4%,同样优于现有同类方法。  相似文献   

17.
城市高架快速路与地面道路,主要通过出口匝道及其下游交叉口进行交通转换,高峰时段出口匝道及下游交叉口交通拥堵频发。以元胞传输模型为基础,构建出口匝道及下游交叉口交通预测模型;采用动态调整周期时长和信号相位的控制策略,建立基于元胞传输模型的交叉口信号控制模型。以排队长度、绿灯和周期时长为约束条件,以各进口道加权平均延误为目标函数,进行信号配时动态优化。以成都市实例匝道和交叉口进行验证,表明本文提出信号控制策略可有效降低此类交叉口的饱和度、延误和排队长度,提升其通行效率。  相似文献   

18.
随着城市化的发展,城市路网变得更加复杂,交通量日益增多.传统的数据采集方式如线圈、卡口存在铺设难度大、维护成本高、数据缺失等缺点.随着网络出租车的兴起,海量的轨迹数据被收集起来.本文整合了基于轨迹数据的交叉口排队模型和交叉口启动波模型,估计路口各相位排队长度,并应用交通波理论对交叉口各相位配时进行优化,建立了基于轨迹数据的单交叉口信号配时模型.该模型采用交叉口SCATS系统实际数据进行路口建模,经仿真验证,相较于原配时方案与Webster配时方法,该模型能够将交叉口延误分别降低61.37%和36.95%,验证了该模型的有效性.   相似文献   

19.
基于浮动车停车点数据交叉口车辆排队长度计算方法   总被引:1,自引:0,他引:1  
浮动车数据中存在许多行驶速度为零的停车点数据记录,它们和交叉口车辆排队长度存在一定的空间关系.针对此提出一种新的基于浮动车停车点数据计算交叉口前车辆排队长度的方法.首先根据车辆停车点地理位置和正常行驶点的连续关系及和路段的相对位置进行地图匹配,提取出路段上交叉口前正常排队停车点数据;然后从正常排队停车点数据中计算出相对交叉口的浮动车数据相对位置关系,根据对浮动车停止点距离交叉口的位置密度分布变化进行2次统计计算,推算出交叉口前车辆排队长度.最后通过实际浮动车数据计算实例对本方法进行了说明和验证.  相似文献   

20.
基于模糊综合评判的道路交通状态分析模型   总被引:2,自引:0,他引:2  
结合交通流本身的特点,选择对交通状态变化反应灵敏,容易获取,且准确率较高的参数作为判别道路交通状态的指标。综合考虑各种情况,选取交叉口进口道最大相位饱和度、进口道平均最大排队长度比和路段平均车速为特征参数,设计了一种基于模糊综合评判的道路交通状态分析模型,并用VISSM4.20对以上方法进行了模拟验证。试验结果表明,单个的特征参数得到的交通状态判别结果波动性较大,准确性不足。通过将其进行模糊综合评判后,判别结果有了较好的稳定性和准确度,所提出的算法能够提高交通状态实时判别的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号