首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于成熟的明线上高速列车气动噪声计算模型和可压缩大涡模型,考虑声学无反射边界条件,利用计算流体力学软件Fluent建立无限长隧道内高速列车气动噪声计算模型,对比分析高速列车在明线上与隧道内运行时的流场组织结构和气动噪声源。结果表明:高速列车在明线上与隧道内运行时具有类似的流场结构和气动噪声源分布规律,但隧道内的流场结构尺度与强度、气动噪声源强度均比明线上大;车速为350 km·h-1时,隧道内头车排障器尖点扰动区的速度幅值约为明线上的1.2倍,列车尾流区长度约为明线上的1.7倍,整车、1位转向架、头车流线型车底及中间车上部的等效声源声功率分别约为明线上的3.2倍、1.6倍、2.7倍和4.2倍;隧道内活塞效应并不是在全频率范围增加等效声源声功率,而是在包含峰值频率较狭窄的频率范围显著地增加等效声源声功率。  相似文献   

2.
随着列车速度的提升,气动噪声问题愈发突出,而受电弓引发的气动噪声占有较高比例,因此提出一种射流主动降噪方法。通过建立3节车编组的整车模型,采取定常SSTk-w湍流模型和宽频带噪声模型进行仿真,分析高速列车受电弓气动噪声声源及流场特性;基于LES和FW-H声学比拟理论分析研究气动噪声特性。数值计算结果表明,顺向射流降噪效果显著,逆向射流降噪效果不明显。在列车速度350km/h下,施加顺向射流的标准监测点平均总声压级降幅达6.04d B,数值算例结果验证了本文提出的射流主动降噪的有效性。  相似文献   

3.
高速列车气动阻力分布特性研究   总被引:2,自引:0,他引:2  
针对由8辆车组成的CRH3型动车组的实际外形,生成约1.6亿个计算网格,采用大规模并行计算,模拟单列高速列车在明线轨道上以350km/h速度运行时的气流流场,并对列车各组成部分的气动阻力特性进行统计和归类,给出各部件气动阻力对列车总气动阻力的贡献,为高速列车局部减阻优化设计提供参考。  相似文献   

4.
为了研究时速140km/h高速地铁列车以不同运行方式在隧道中运行时的气动效应,采用三维、可压、非定常N-S方程的数值计算方法,对地铁列车由明线驶入隧道及站间运行时产生的气动效应进行数值模拟,分析不同运行方式对高速地铁隧道气动效应的影响。研究结果表明:列车站间运行时,车体表面测点压力峰峰值沿车长方向基本不变;而列车由明线驶入隧道时,车体表面测点压力峰峰值从头车向尾车逐渐降低。2种运行方式下的隧道壁面测点压力峰峰值均在中间风井处达到最小值。并且列车由明线驶入隧道时的最大车体表面和隧道壁面压力峰峰值分别为列车站间运行时的1.37倍与1.49倍。不同列车密封指数下,列车由明线驶入隧道时的车内压力变化均大于列车站间运行时的车内压力变化。因此,地铁列车由明线驶入隧道时的空气动力学效应比站间运行时更加不利。  相似文献   

5.
建立了都市快轨列车穿越矩形隧道的三维计算模型,应用不连续网格和动网格来模拟快轨列车穿越隧道的动态过程.采用三维、不可压缩、非定常的N-S方程考虑移动的快轨列车与固定的隧道之间的相对运动.在100 km/h、130 km/h和160 km/h 3种速度工况下,计算研究了列车从进入隧道直至完全驶出隧道的气动阻力变化规律和车体表面压力变化规律.计算结果表明,随着运行速度的增大,列车的气动阻力及车体表面压力变化幅值均增大.  相似文献   

6.
高速列车车头的气动噪声数值分析   总被引:1,自引:0,他引:1  
随着列车运行速度的提高,列车气动噪声变得越来越明显,降低气动噪声已成为控制高速列车噪声的关键之一。本文对高速列车车头气动噪声进行数值分析。首先,建立高速列车三维绕流流场的数学物理模型,分别利用标准k-ε湍流模型和大涡模拟计算高速列车的外部稳态和瞬态流场。然后,基于稳态流场,利用宽频带噪声源模型计算高速列车车身表面气动噪声源;基于瞬态流场,分析车身表面脉动压力的时域及频域特性;利用Lighthill声学比拟理论,计算高速列车远场气动噪声,分析远场气动噪声的时域及频域特性。本文对研究和控制高速列车气动噪声具有一定意义。  相似文献   

7.
在高速列车研制和运行中,气动噪声控制是必须考虑的关键问题之一.介绍气动声学发展的概况,提出高速列车气动噪声数值计算的方法,通过在空间流场采用LES方法求解,在近壁区采用低雷诺数两方程湍流模型的DES方法,可以得到随时间变化的脉动压力场,采用莱特希尔气动声学比拟理论把声学信息从流场中提取出来.通过与文献提供的类后视镜凸起物的噪声结果比较,验证方法的有效性.运用该方法对某型高速列车开展气动噪卢计算,得到列车在运行中声压级,可以为进一步研究列车气动噪声提供技术支持.  相似文献   

8.
针对高速列车受电弓气动噪声声源组成的复杂性和各部件对总噪声的贡献量问题,基于Lighthill声学理论,采用三维、宽频带噪声源模型,LES大涡模拟和FW-H声学模型对DSA380型高速受电弓气动噪声进行数值模拟,分析该型受电弓的主要气动噪声声源特性及各部件对受电弓远场气动噪声的贡献量大小,并提出降噪改进意见。研究结果表明:受电弓主要噪声源为弓头、绝缘子、底架、下臂杆等组件的迎风侧位置,其中碳滑板、平衡臂、弓头支架、底架、绝缘子、下臂杆等部件对远场气动噪声声源的贡献量最多;受电弓气动噪声是宽频噪声,且主要能量集中在1602 500Hz,存在主频305、608、913Hz(350km/h运行),且各阶主频与运行速度均满足线性关系;相邻2测点满足2倍关系的横向受声点声压级,其衰减幅度大约为6dBA,且与横向距离的对数成线性关系;垂向受声点的声压级最大值出现在距地面高度7.192m处;运行速度不改变受电弓的偶极子噪声指向特性(垂向平面在θ=0°、纵向平面在θ=120°、横向平面在θ=90°处的噪声指向性明显),只改变其幅值,随着运行速度的增大其增加幅度越小;受电弓以开口方式运行的气动噪声性能较闭口方式好,降噪效果明显。  相似文献   

9.
采用三维、不可压缩和Lilly LES+FW-H方法,对1:8缩比3车编组EMU6动车组以200,250,300和350 km/h的车速运行时进行气动噪声特性数值模拟,得到列车不同速度级运行时的压力、速度与涡量分布,表面脉动压力、辐射声场等气动与声学性能。研究结果表明:偶极子声源强度主要分布在转向架及其周围的车体表面位置;A计权声压频谱在略小于1 000 Hz频率处测点声压级达到峰值;气动噪声分布频带很宽,噪声能量在1 000 Hz左右较为集中,往高频和低频部分则逐渐衰减;头车流线型附近声压级较大,在尾车以后越远离车体,声压级越小。其研究结果可为高速动车组的气动声学特性优化研究提供参考依据。  相似文献   

10.
为适应高速列车进一步提速的更低气动阻力实际需求,针对CR400AF型高速列车动车转向架和带头型简化车体,应用底部流动导向控制思想,采用附加轻质易造型材料包覆原有部件的理念,开展转向架各部件流线型化和车体底部导流板综合减阻效果的验证试验与数值仿真研究。验证试验选择有无导流板的流线型转向架带简化车体模型,在3种试验速度工况下阻力试验值与仿真值误差均少于10%,验证了数值仿真的可靠性,带导流板试验模型较不带导流板试验模型均有减阻。数值仿真研究运用Realizable k-ε湍流模型,采用切割体笛卡尔网格划分技术,并在边界层内采用棱柱层网格,控制第1层网格的厚度,确保y+值能满足壁面函数要求。经稳态明线运行的仿真模拟网格无关性检验后,探究了流线型动车转向架与导流板组合运用的气动减阻特性及效果。对比了流线型动车转向架与安装导流板前后动车转向架、简化车体以及转向架舱上的阻力变化情况和压力分布变化情况,分析了转向架区域的流场结构变化。数值仿真结果表明:流线型设计的动车转向架相较于原始动车转向架有一定的减阻效果,在400 km/h的运行速度下减阻率达到1.08%。流线型设计动车转向架与导流板组合运用后...  相似文献   

11.
基于可压缩流体的纳维—斯托克斯方程和RNG k-ε模型,以由头车、中间车和尾车3辆车编组的某高速列车1∶8风洞试验模型为研究对象,采用计算流体动力学软件(CFD),建立包括车体和走行部的三维非结构化列车表面离散网格模型和列车与隧道、列车与明线空间的组合计算网格模型,研究高速列车通过隧道时气动阻力的时变特性和规律.结果表明:高速列车在车尾刚进入隧道人口时其气动阻力达到最大值,为同样工况下明线运行时的2.5倍;高速列车完全进入隧道后,其气动阻力在一段时间内处于相对平稳期,为明线运行时的1.8倍;之后在隧道压力波的作用下,高速列车的气动阻力会发生准周期变化,变化幅度接近明线运行时的60%;在隧道长度大于高速列车长度的前提下,高速列车通过不同长度隧道时,其进入隧道时的气动阻力最大值均比较接近,而且在隧道内运行时的气动阻力变化特征和幅值也基本相同.  相似文献   

12.
开展400 km/h高速铁路噪声影响研究是践行“交通强国”战略的有力举措。为研究400 km/h高速铁路噪声特性及辐射源强,获取现有直立式声屏障在速度400 km/h条件下降噪效果及适应性,采用有限元模型进行仿真计算,模拟计算400 km/h高速铁路噪声源强并进行组成分析,对高速铁路通用的直立式声屏障降噪效果、耐久性、安全性等进行分析研究,对目前直立式声屏障适应性提出实施建议。研究表明:高速列车以速度400 km/h运行时,距离铁路外轨中心线25 m、轨上3.5 m处,桥梁段总声级为97.8 dB (A),路基段总声级为96.7 dB (A),气动噪声大于轮轨噪声;提出现有直立式声屏障在速度400 km/h条件下插入损失为2.7~8.9 dB (A);在安全方面,提出立柱底部螺栓养护年限;针对目前铁路直立式声屏障通用图适用性进行分析,提出结构安全优化建议。研究结果可指导400 km/h高速铁路噪声影响分析及直立式声屏障设计工作。  相似文献   

13.
通过对CIT500试验列车200~350km/h速度级车外噪声源图谱试验研究,获得高速列车的辐射噪声、表面噪声源图谱与其运行速度的依赖关系,发现转向架区域噪声与运行速度3次方成正比,以轮轨噪声为主;车头、风挡、受电弓区域噪声与运行速度6次方成正比,以气动噪声为主;气动噪声与轮轨噪声均为中低频宽频噪声,具有较大混叠区,但是气动噪声更趋向低频;车外总噪声源频谱谱型具有双峰特点,类似两条抛物线叠加,左抛物线表征气动噪声频谱谱型,右抛物线表征轮轨噪声频谱谱型。进而从声源性质出发,通过声源频谱分析和声学相似讨论,构建车外噪声源频谱分解经验模型,比较准确反映车外噪声源成分随运行速度的变化规律。车外噪声源频谱分解经验模型有助于精确认识我国高速列车噪声源结构和发声机理。  相似文献   

14.
周大林  高伟  郑玄 《机车电传动》2015,(3):78-79,96
针对广州地铁3号线北延段刚性接触网下120 km/h地铁列车弓网连续燃弧问题,分析了燃弧产生原因,建立弓网系统仿真模型,从受电弓、接触网两方面进行仿真计算,提出适合120 km/h地铁列车运营的受电弓和接触网参数。通过运营线路试验验证,取得良好效果。  相似文献   

15.
研究目的:国内城市轨道交通快线项目越来越多,合理选择列车最高运行速度是决定快线项目成本和效益的关键。由于缺乏相关规范,目前一般根据旅行时间目标和区间达速比选取,遗漏了一些重要的影响因素,造成部分项目速度选择不尽合理。本文从旅行时间价值、牵引能耗、车辆购置费和维修费、盾构区间建设成本以及车辆基地建设成本等方面进行系统分析,提出地铁B型车列车最高运行速度选择的原则和方法以及参考指标,供城市轨道交通快线项目选择列车最高运行速度参考使用。研究结论:(1)地铁B型车(4M2T)在区间最短匀速巡航时间10 s的条件下,列车最高运行速度80 km/h、100 km/h和120 km/h的最小区间长度分别为1 000 m、1 500 m和2 500 m;(2)列车最高运行速度越高,建设和运营成本越高,但呈非线性关系;(3)研究条件下,根据速度提高获得的时间价值与增加的成本比较,当区间距离在1.5 km以内时,最高运行速度100 km/h列车需要降速运行;当区间距离为1.5~3.5 km时,100 km/h最高运行速度具有优势;当区间距离达到3.5 km及以上时,120 km/h最高运行速度具有优势;(4)具体建设项目可按照本文提出的方法,根据线路的具体情况进行模拟计算和分析,并综合考虑线网资源共享等因素,选取最优的列车最高运行速度;(5)本研究成果对城市轨道交通快线项目规划设计时合理选择列车最高运行速度具有指导意义。  相似文献   

16.
建立不同模型尺度的高速列车气动噪声数值计算模型,利用改进的延迟分离涡模拟方法(IDDES)和FW-H声学模型对高速列车近场流场和远场噪声进行数值模拟.通过风洞试验验证了本文数值计算方法的合理性.对比分析不同模型尺度下高速列车的气动力、流场结构、表面压力脉动以及远场噪声.结果表明:模型尺度对高速列车的气动行为和声学行为具...  相似文献   

17.
正2018年1月23日,青岛地铁11号线列车在即墨下线。11号线车辆采用B型车,不锈钢鼓形车体,每列车4节编组,最大载客量约为1 200多人。国内目前运营的地铁列车主流速度是80 km/h,而11号线地铁车辆的最高运行速度达120 km/h,位于国内地铁列车速度前列。值得一提的是,  相似文献   

18.
通过现场测试,对磁浮列车的车外噪声进行了测量。对比分析了磁浮列车外部噪声与地铁列车车外噪声的特性差异。基于声线追踪法,建立了磁浮列车的车外噪声仿真模型,并与试验结果进行了对比验证。基于该仿真模型分析了磁浮列车的车外噪声贡献。研究结果表明,当列车运行速度为60 km/h时,磁浮列车的车外噪声比地铁列车低5 dB(A)左右,其车外噪声贡献主要来自于受电靴/供电轨系统,显著贡献分布在200~5 000 Hz频带。  相似文献   

19.
横风作用下高速列车安全运行速度限值的研究   总被引:2,自引:0,他引:2  
横风作用下的列车安全运行速度限值应通过列车气动特性和车辆轨道动力学特性的分析得到。以我国CRH3型高速列车实车为原型,考虑真实受电弓、转向架等列车的细部特征,假定列车在平地上行驶,对列车速度分别为200、250、300、350和380km/h,横风速度分别为10、15、20、25和30m/s,风向角为90°的25个工况进行气动特性的数值模拟,并采用国内实测轨道谱和德国轨道谱分别对这25个工况的车辆轨道动力学性能进行仿真计算和对比分析。结合国家标准和技术规范,给出CRH3型列车在平地上运行时,横风风速与列车最大安全运行速度之间的对应关系,为横风作用下的列车运行安全控制提供参考。  相似文献   

20.
为减小动车组车载设备的气动阻力,针对受电弓检测装置左右设备分别建立单体和3节车编组的数值计算模型.基于空气动力学的数值计算方法,将列车明线运行工况归结为定常不可压缩黏性流体流动问题.利用结构化网格划分软件对计算区域进行离散化并验证网格无关性,再采用标准k-ε湍流模型预测受电弓检测装置周围流场,对比分析不同列车速度、运行...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号