首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为给多跨非对称钢-混混合梁桥设计与施工提供参考,以一座4跨非对称钢-混混合梁桥——龙翔大桥主航道桥为背景,采用有限元软件建立该桥杆系结构有限元模型,分析不同合龙顺序、钢箱梁长度对该桥成桥后线形和内力的影响,以及9个关键参数对预拱度及合龙口纵向变形的影响。结果表明:合龙顺序对成桥线形和内力的影响较小,该桥采用2个中跨依次合龙的施工顺序;各墩墩顶负弯矩绝对值和中跨跨中挠度随钢箱梁长度与中跨跨径之比k1增大而呈线性减小,该桥k1最终取0.371,中跨钢箱梁长75 m;钢箱梁自重和主梁混凝土弹性模量对预拱度影响较大,前者变化6%、后者变化10%时预拱度变化值分别约为15 mm和13 mm;环境温度对合龙口纵向变形影响较大,环境温度变化10℃时合龙口纵向变形变化12 mm。施工控制时应严格控制钢箱梁自重、主梁混凝土弹性模量,确保按设计温度合龙。  相似文献   

2.
以雄楚大街快速路跨铁路高架桥(28+68.5+63.5)m转体施工连续钢箱梁为例,分析了中支点外挑横梁的设置方式对主梁结构效应及抗倾覆稳定性的影响,以及转体阶段预拱度设置方式对施工及成桥状态结构行为的影响。结果表明,外挑横梁对提高钢箱梁抗倾覆稳定性及改善结构受力较为有利,转体完成后施加上顶力合龙可减小预拱值,并改善一期恒载作用下的结构受力状况。  相似文献   

3.
大跨连续刚构桥线形控制质量关键取决于悬臂施工过程中各节段的预拱度取值。基于灰色GM(1,1)模型理论,将大跨连续刚构桥各节段预拱度值的理论计算值和现场实测值之间的差值作为灰色微分序列,建立新陈代谢GM(1,1)模型。结合镇大公路京杭运河大桥主桥施工监控项目工程实际,依据灰色模型对大桥施工过程中各节段的预拱度进行预测,从而控制桥梁线形。监控实践表明,灰色GM(1,1)模型能够较精确地预测施工过程中各节段的预拱度,很好地应用于大跨连续刚构桥梁的线形控制中。  相似文献   

4.
宜宾临港长江公铁大桥主桥为主跨522 m的公铁同层双塔双索面钢箱梁斜拉桥,主桥钢箱梁宽63.9 m、高5 m,节段最大重量519.6 t。钢箱梁采用分部件加工、节段整体制作、场内预拼装方案制造。南岸钢箱梁采用边跨顶推+中跨单悬臂施工;北岸钢箱梁采用边跨存梁+双悬臂施工;中跨合龙段采用配切+顶推合龙。采用钢箱梁顶板与底板单元两拼工艺、钢箱梁锚固块体多工序组拼、预设反变形量的长线法总拼等制造技术,有效解决了超宽钢箱梁焊接变形量大的问题,大大提高了钢箱梁制造精度;南岸边跨钢箱梁利用中跨侧来梁进行顶推施工,解决了边跨运梁、吊梁施工难的问题,且避免了占用既有道路;北岸边跨钢箱梁利用枯水期预先存梁,解决了浅滩区钢箱梁施工受季节性水文影响大的问题,为双悬臂施工提供了先决条件;中跨合龙段采用现场配切+顶推施工,实现主跨钢箱梁精确合龙。  相似文献   

5.
针对钢箱梁斜拉桥成桥目标线形的实现,以厦漳跨海大桥北汊主桥为例,提出基于无应力状态控制法理论的主梁预拱度取值、制造尺寸确定、预拼装线形计算及悬臂拼装控制方法.该桥为多跨连续半飘浮体系钢箱梁斜拉桥,采用桥梁结构设计系统SCDS2011建立桥梁有限元模型,求得钢箱梁设计预拱度;钢箱梁制造尺寸确定时考虑竖曲线和设计预拱度及梁体轴向压缩、弯矩转角的影响;以预拼装线形为基础计算得出每节段前、后控制点的坐标值进行预拼装;在钢箱梁悬臂拼装过程中进行线形控制时,考虑安装阶段的计算挠度及成桥状态与设计预拱线形的高程差.事实证明,采用该方法对钢箱梁斜拉桥进行成桥目标线形的控制取得了良好的施工精度.  相似文献   

6.
宁波舟山港主通道舟岱大桥北通航孔桥为(125+250+125)m钢-混混合梁连续刚构桥,除主跨跨中85m范围主梁采用钢箱梁外,其余均采用变截面混凝土箱梁。该桥主墩墩顶混凝土主梁采用分块现浇,其余混凝土主梁采用节段预制、悬臂拼装法施工;主跨跨中钢箱梁采用2台桥面吊机整体起吊合龙。采用MIDAS Civil软件建立有限元模型,模拟桥梁施工过程,结合有限元计算进行该桥施工控制。施工中,考虑施工阶段、活载和运营阶段位移进行主梁制造预拱度控制;通过负误差动态控制主梁预制长度和角度误差;通过精确定位基准梁和调整环氧树脂胶厚度控制主梁拼装误差;通过对环境温度、合龙段吊装时钢-混结合段变形和钢箱梁变形修正进行钢箱梁制造长度控制。通过以上施工控制关键技术,混凝土主梁拼装完成时主梁轴线和高程最大悬臂拼装误差分别为15.1mm和1.4mm,钢箱梁合龙后精度在10mm以内,满足设计要求。  相似文献   

7.
周昌栋  高玉峰  代明净  张波 《公路》2022,67(2):117-121
目前钢箱梁悬索桥的钢箱梁架设均采用先将各梁段全部吊装后再焊接的方式进行施工.为增加结构在施工过程中的稳定性,加快钢箱梁的安装效率,宜昌伍家岗长江大桥施工中首次采用了"钢箱梁焊架同步"施工新技术,即吊装一部分梁段后即开始在架梁的同时对已吊装的梁段进行两两焊接,实现大跨钢箱梁悬索桥加劲梁焊架同步的多作业面施工控制.对3种钢...  相似文献   

8.
润扬大桥悬索桥钢箱梁吊装技术   总被引:1,自引:2,他引:1  
润扬长江公路大桥南汊悬索桥由于跨度大、钢箱梁吊装重量大、南岸无水区长、跨中粱段设刚性中央扣等特点,施工难度大。钢箱梁吊装采用联合研制的新型全液压跨缆吊机进行47块钢箱梁吊装工作,施工进度快,安全可靠性高。  相似文献   

9.
江苏省崇启长江公路大桥主桥为102 m+4×185 m+102 m连续钢箱梁桥,185 m钢箱梁吊装施工采用自平衡吊索具系统、2艘大型浮吊同步抬吊的方式起吊.为保证大跨、超重(2 600 t)钢箱梁构件能够安全顺利安装到位,对钢箱梁吊装施工准备阶段及实施阶段进行监理控制.以安全监理控制为重心,施工准备阶段监理主要是审查...  相似文献   

10.
港珠澳大桥江海直达船航道桥设计为中央单索面钢索塔钢箱梁三塔斜拉桥,跨径布置为(110+129+258+258+129+110)m,采用外边跨无斜拉索的布跨方案。外边跨整体段长128.355 m,重约3 516 t,采用无支架整体吊装施工技术一体化安装。现主要介绍外边跨整体段双起重船抬吊工艺、吊具设计及监控措施。工程实践表明:整体段吊装吊具设计合理,吊装工艺安全可靠,"逐级纠偏"的监控措施能有效地解决了由于起重船性能参数所造成的同步性控制难的问题。  相似文献   

11.
浙江秀山大桥主桥为主跨926 m的双塔三跨连续钢箱梁悬索桥,全桥加劲梁共分89个安装节段,标准节段吊装重量212.6 t,最大吊装重量247.1 t。桥址处地理环境复杂、海洋环境恶劣,钢箱梁安装难度大。根据现场实际情况,钢箱梁中跨由跨中向桥塔方向对称吊装,两岸边跨由锚碇向桥塔方向对称吊装,先合龙中跨再合龙边跨。施工过程中,运梁船采用自航驳船动力定位+辅助钢丝绳定位;中跨和秀山岸边跨的一般梁段采用船舶运输+缆载吊机安装;官山岸边跨梁段采用移梁轨道存梁,然后采用液压同步提升系统安装;秀山岸边跨锚碇无索区梁段采用浮吊+轨道牵引纵移到位;桥塔无索区梁段采用缆载吊机+液压同步提升系统起吊荡移方式安装;边跨侧合龙段安装时,需对合龙口两侧梁段进行纵向牵引。  相似文献   

12.
大跨度悬索桥钢箱梁吊装精细化分析   总被引:2,自引:0,他引:2  
钢箱梁吊装是悬索桥施工的一个重要工序,吊装过程中结构的内力和变形变化显著,为保证施工过程安全,以武汉阳逻长江大桥为例,建立考虑索鞍接触、双吊索、梁段连接等实际构造特性的精细化有限元模型,分析钢箱梁吊装过程中结构的变形及钢箱梁吊装过程中主索鞍的顶推工艺。分析可知:钢箱梁底板开口距在吊装前期较大,后期逐渐减小;吊装过程中,钢箱梁线形从明显的凹曲线,逐渐转变为凸曲线并最终达到设计线形;吊装过程中跨缆吊机需设置最小预偏量;同一吊点内、外侧吊索存在的拉力差随着吊装进行不断减小。  相似文献   

13.
某桥为自锚式悬索桥,钢箱梁采用分幅、单向顶推法施工,柔性墩多点顶推工艺.结合该桥的施工监控项目,采用ANSYS 有限元分析软件对钢箱梁、钢导梁、顶推平台及临时墩约束等进行模拟,分析钢箱梁顶推施工全过程,并对顶推过程中的局部应力和稳定性进行计算.钢箱梁在顶推过程中,临时墩标高的调整要紧密结合钢箱梁的5段连续预拱度曲线,实际调整中,包括临时墩的沉降测量值.计算结果表明顶推施工控制基本符合结构受力要求.  相似文献   

14.
福海立交FH2匝道桥为上跨沪昆铁路和南二环高架桥,上部结构采用37m+45m+37m连续钢箱梁。该工程吊装遇到钢箱梁起重重量大、吊装场地狭窄、受铁路和城市道路保通压力等难题。该文介绍了解决上述难题的办法:经现场测量与吊车工况计算分析,采用CC2500履带吊车分段吊装连续钢箱梁的施工工艺,设置临时支架高空拼接,从而使该连续钢箱梁整体焊接合格后落梁。  相似文献   

15.
常大宝 《中外公路》2012,32(4):196-199
三塔悬索桥相对两塔悬索桥多了一个主跨,是一个全新的桥梁结构形式。其主梁吊装施工难度大大增加,特别是合龙段的施工,没有成熟经验可循。该文结合国内外首座千米级三塔悬索桥——泰州长江公路大桥上部结构钢箱梁吊装施工,详细介绍了钢箱梁吊装施工的关键控制点及合龙段施工方案的确定,可为大跨三塔悬索桥钢箱梁吊装施工提供参考。  相似文献   

16.
杭州市跨京杭运河高架桥为(37+60+37)m连续钢箱梁桥,钢箱梁总重约932t。为解决钢箱梁运输难题、加快施工进程,该桥钢箱梁采用纵向分段、横向分块施工方案,钢箱梁横向采用错位分割。为提高梁段的刚度并降低各梁段刚度的差异,提出剪刀撑加强方案,即在梁段的腹板与顶板开口处及缺失腹板处沿顺桥向增设剪刀撑。为分析剪刀撑加强方案的可行性,采用MIDAS Civil建立中跨有限元模型,分析吊装及安放过程中各梁块跨中处的位移与应力,并对实桥应力进行监测。结果表明:采用剪刀撑加强方案后,各梁块的变形和应力均较为协调,满足后续横向焊接施工要求;结构应力处于安全范围。实践证明,剪刀撑加强方案能够满足钢箱梁横向分块施工的控制要求。  相似文献   

17.
九江长江公路大桥主桥为(70+75+84+818+233.5+124.5)m六跨不对称双塔双索面混合梁斜拉桥,南边跨及部分中跨为混凝土箱梁,其余为钢箱梁,钢箱梁采用双悬臂拼装施工工艺。为保证钢箱梁双悬臂施工期不平衡力作用下的结构及施工安全,在北塔与钢箱梁间设置了竖向、横向及纵向临时约束:通过钢绞线将设置在北塔下横梁上的竖向混凝土支墩和钢箱梁底部的钢支墩连成整体,形成竖向临时约束;竖向临时约束兼作钢箱梁双悬臂施工期间的纵向临时约束,主要由竖向临时约束产生的摩擦力抵抗在悬臂吊装过程中产生的不平衡力;在合龙阶段增设顶推装置进行纵向临时约束,兼做中跨顶推辅助合龙的顶推装置;横向临时约束主要由抗风支座和塔梁间的临时钢支墩实现。  相似文献   

18.
乔燕  孙传智 《公路》2012,(6):22-27
大跨度预应力混凝土V形刚构桥桥梁线形对桥梁受力影响很大,而结构参数的取值对预拱度的预测影响较大,在施工监控过程中需根据施工现场监测数据进行结构参数调整。首次提出基于响应面法的针对大跨混凝土V形刚构桥进行施工监控的方法,该方法包括试验设计、有限元分析、响应面函数拟合和结构参数调整。并以实际工程为例,采用Box2Behnken试验设计方法,选择影响成桥线形的主要结构参数作为自变量,关键截面的挠度值为因变量,利用显式响应面函数拟合结构静力响应值与结构参数之间复杂的隐式关系。然后根据施工过程中的实测挠度数据进行结构参数识别,再进行后期的预拱度预测,实现前期预测和后期调整相结合,工程实例表明该方法能够在施工控制过程中有效地进行参数识别,得到大跨V形混凝土刚构桥的理想线形。  相似文献   

19.
天津富民桥空间索面自锚式悬索桥施工采用先梁后索法,主跨钢箱梁采用水中平台拖拉法施工,边跨钢箱梁采用大吨位吊车直接吊装施工.主要介绍该桥钢箱梁的施工技术.  相似文献   

20.
研究了应用于钢箱梁顶推施工的BIM模型建模方法、钢材用量校核方法及施工方案模拟优化的关键。建立了考虑预拱度的钢箱梁模型、含钢筋的桥墩模型,整合形成桥梁施工BIM模型。进行用钢量统计并进行了与设计统计结果及实际施工材料消耗结果的校核,分析了设计质量统计误差原因。完成了钢箱梁吊装、顶推、落梁全过程施工方案模拟检验与吊装作业优化。关成果证明BIM技术在桥梁顶推施工中具有很好的适用性,为项目管理人员进行精细化施工质量控制提供了信息化技术手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号