首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
五峰山长江特大桥主桥为主跨1 092m的钢桁梁公铁两用悬索桥,北锚碇采用100.7m×72.1m×56m的沉井基础。该沉井首节采用钢壳混凝土结构、其余9节采用钢筋混凝土结构,采用"三次接高、三次下沉"的方案施工。为及时掌握沉井下沉施工过程中的几何姿态及受力情况,建立实时在线监测系统,对沉井几何姿态、沉井结构应力及沉井刃脚土压力进行自动化监测,基于监测数据及时进行沉井下沉控制。结果表明:下沉过程中沉井测点高差和倾斜度均在限值内,沉井挠度基本在20mm限值内,沉井几何姿态较好;沉井混凝土及钢结构测点的实测应力基本在限值范围内,沉井刃脚各测点的土压力均控制在1.20MPa限值内,沉井结构受力良好。  相似文献   

2.
在卵石层以及卵石层与风化花岗岩交界层中,沉井容易遇到大漂石搁置刃脚,从而出现下沉困难和偏斜问题。针对此问题,采取水下钻孔松动爆破技术及潜水员水下处理,清除刃脚底部漂石(最大颗粒漂石直径达到1.4m),从而使沉井下沉并有效控制纠偏,确保沉井均匀下沉至设计标高。  相似文献   

3.
介绍了泰州长江大桥南锚碇沉井基础的施工特点和下沉阻力现场监测技术。在下沉过程中,采用土压力计监测了每节沉井的侧壁土压力和沉井的刃脚土压力。通过这些监测数据的整理和规律分析,既控制了沉井的安全平稳的下沉,也为同类型的大型沉井的设计和施工提供了可以参考的依据。  相似文献   

4.
船闸基地锚泊区采用沉井式结构作为基础,主要是由于受周边环境影响,施工场地狭隘,同时地基承载力较弱.沉井施工能较好地适应上述问题,从施工结果来看达到了预期的效果.同时,沉井施工对缩短工期起到了一定的作用.文中介绍了施桥三线船闸工程土建标船闸基地锚泊区沉井的制作、下沉及下沉过程中施工技术控制.  相似文献   

5.
沉井周边地质情况是沉井的设计及沉井下沉施工的主要因素,沉井的平稳下沉及成功下沉到设计位置是沉井施工的关键,因此有必要对沉井下沉过程的沉井仞脚土压力和井壁摩阻力进行实时监测,以指导沉井的信息化施工。四川金沙江向家坝水电站10号沉井仞脚土压力和井壁摩阻力的实时监测结果表明,监测数据真实地反映了沉井周边的地质情况,指导了沉井的信息化施工。  相似文献   

6.
马鞍山长江大桥南锚碇采用沉井基础,沉井入土深度超过50m,其施工采用“3次接高,3次下沉”的工艺:第1次下沉采用降排水措施,第2次下沉采用半排水措施,第3次下沉采用不排水措施。在沉井第3次下沉过程中,开启空气幕助沉,显著加快了下沉速度。沉井下沉期间,采用综合监控手段,保证了沉井顺利、精确下沉。实践证明,该桥所采用的沉井下沉方案科学合理,下沉到位后沉井几何姿态良好。  相似文献   

7.
为了解特大圆形锚碇沉井下沉施工中下沉系数和稳定系数变化规律,以武汉鹦鹉洲长江大桥北锚碇高43m、外径66m的沉井基础为背景,运用太沙基理论对3次接高与3次下沉的不排水沉井施工方案各工况进行稳定性验算。结果表明:在前2次沉井下沉过程中,其下沉系数较大,下沉较容易;第3次下沉过程中,其下沉系数减小,下沉较困难,须采取相应助沉措施。沉井的正面阻力和侧摩阻力在各下沉工况下均随着沉井的下沉深度呈线性增加,且正面阻力在沉井节段接高稳定工况下增幅达到最大,在刃脚踏面支承工况下增幅最小,稳定性均满足要求。  相似文献   

8.
王宏翔  李维生 《公路》2021,66(12):193-198
在超大型沉井施工过程中,由于沉井体积较大,重量大,下沉深度深,受地层地质、地下水、周边结构物等影响,在不同下沉阶段,其下沉方式不同.在大型桥梁陆地沉井下沉前期采用降排水下沉,中后期采用不排水下沉,不同地层,取土方式不同,对四周地面、结构物等影响非常大.比如在粉土、粉质黏土、粉砂、粉细砂和圆砾等地质中容易出现取土不均匀,取土不当引起内外压力差过大,产生涌砂等现象,造成沉井突沉,甚至沉井倾斜,沉井四周地面不同程度的沉陷.为了确保沉井施工质量和安全,顺利下沉到位,依托南京仙新路过江通道北锚碇沉井的不排水下沉关键技术进行讨论研究.  相似文献   

9.
为解决城市核心区停车问题,提出井筒式地下车库自下沉沉井建造技术,充分挖潜利用地下空间资源建设地下立体停车库。该技术采用“装配式+自下沉沉井”技术施工,将装配式建筑的特点和自下沉沉井工艺相结合; 采用工厂标准化生产预制片,质量可靠; 现场拼装,减少混凝土浇筑施工量,有效节约工期。整个沉井施工过程无放坡、占地小、无需大型设备、施工速度快、安全性高、噪音小,对周边建筑和管线影响小。该技术已在工程实践中得以应用。  相似文献   

10.
常泰长江大桥主航道桥为主跨1 176m公铁合建斜拉桥,通过技术经济综合比选,桥塔基础采用沉井方案。针对超大型沉井基础截面尺寸大、自重重、入土深等问题,提出了减自重、减冲刷的新型台阶型沉井基础方案,通过模型试验及数值分析确定了沉井相关设计参数,并基于地基中土体的三维应力状态和摩尔-库伦强度破坏准则,建立了深大基础三维地基承载力计算表达式。沉井基础成功实施的关键是可控的取土下沉措施,研究了超大型沉井下沉机理,探明随着沉井平面尺度的不断增大,端阻力与井壁侧摩阻力相比逐渐成为控制因素,沉井下沉施工必须进行盲区取土。通过对沉井刃脚下土体破坏形态的研究,提出土体破坏的临界宽度控制法和台阶式取土法,可为沉井下沉施工提供指导。  相似文献   

11.
南京长江第四大桥北锚碇采用沉井基础,沉井尺寸为69.0 m×58.0 m×52.8 m,置于密实卵砾石层,工程地质条件复杂.沉井共分11节,第1节为钢壳混凝土沉井,其余均为钢筋混凝土沉井.采用打设砂桩和换填砂土复合地基加固法加固地基.在加固地基上现场拼装钢壳沉井节段,浇注第1节沉井混凝土.11节沉井分4次接高下沉,首次下沉采取水力吸泥机取土、降排水下沉,其余3次下沉采取空气吸泥机取土、不排水下沉.沉井下沉就位后按照4个分区的顺序逐区进行封底混凝土施工.施工监测表明,沉井下沉姿态、偏差均控制在规范标准之内.  相似文献   

12.
沉井基础施工的核心是沉井的下沉,合理的设计是沉井能够顺利下沉的关键。对南京长江第四大桥北锚碇及泰州长江大桥南、北锚碇等几个大型沉井施工中遇到的困难及解决方法进行了研究。结果表明:在沉井的设计中,适当增加其重率以及合理的设置助沉措施是决定沉井能够顺利下沉的关键因素。  相似文献   

13.
以温州市鹿城区七都岛—铁塔公园段跨瓯江电力隧道工程七都岛侧沉井基础为研究对象,对沉井在软土地基中下沉进行监测研究,通过现场监测数据分析,对沉井侧摩阻力、刃脚底部压力、沉井外土面沉降进行分析,得出沉井在软土地基中的下沉特性,这对理论研究与实际工程设计都有参考意义。现场监测数据结果表明:在软土地基中沉井侧摩阻力随着沉井入土深度的增加呈线性增加,到达一定峰值后缓慢降低;下沉过程中刃脚土压力的波动较为剧烈,其中刃脚斜面阻力占同一深度踏面阻力的10%左右;沉井下沉对周边土体沉降的影响范围比沉井在其他土体中小10%左右,为沉井下沉深度的10%左右。  相似文献   

14.
马鞍山长江公路大桥南锚碇沉井下沉采取“3次接高,3次下沉”的方案.为保证该方案的施工安全,对沉井下沉可行性指标进行验算,并对沉井首次接高期间的沉降量进行预估.计算结果表明,该方案能够满足沉井下沉初期结构本身的安全,保证首次接高期间的沉降量尤其是不均匀沉降量在允许的范围内.南锚碇沉井下沉时,土体采用分区对称的开挖方式,当沉井下沉至标高-34 m左右时启动空气幕助沉,通过对沉井降排水下沉和不排水下沉的过程进行实时监控和分析,有效地确保了该沉井下沉的安全、平稳.  相似文献   

15.
《公路》2015,(12)
马鞍山长江大桥北锚沉井体积巨大,下沉施工中有必要对其进行实时监测,主要监测内容包括刃脚与侧壁土压力、沉井结构钢板钢筋应力、沉井内外水位及沉井几何姿态等。首先采用数值分析,确定了沉井下沉初期为沉井结构受力的最不利工况,且边隔墙中跨部位为关键截面。监测结果表明,所选的关键截面较为合理。在沉井下沉初期,刃脚土压力对吸泥极为敏感。随着沉井的下沉,侧壁摩阻力逐渐增大,刃脚土压力趋于减小。沉井结构钢板与钢筋应力未出现过大拉应力,沉井几何姿态监测结果也表明下沉施工顺利。  相似文献   

16.
马鞍山长江公路大桥北锚碇基础沉井施工中,通过有效的科学研究及现场落实,利用换填层换填形状及工艺的改进,提高了换填基础的整体强度;利用合理的钢壳拼装顺序保证了大体积沉井的现场制作精度;利用降排水下沉、不排水下沉的有效组合保证了沉井的快速下沉;利用下沉定位、纠偏技术和监控技术解决了下沉过程中的精度问题;利用空气幕助沉工艺解决了终沉阶段下沉困难的问题;利用首次对分区隔墙封底技术保证了沉井基础的顺利封底;利用分组施工技术解决了填芯施工进度慢的问题;现将这些经验总结出来,供今后类似工程参考。  相似文献   

17.
特大型水中沉井基础局部冲刷模型试验研究   总被引:2,自引:0,他引:2  
陈策 《公路》2010,(12)
泰州大桥中塔采用了目前我国最大规模的水中沉井基础,浮运沉井施工过程中,由于沉井、水流、泥沙三者的相互作用,将会产生浮运沉井施工期冲刷,进而影响沉井施工,准确地了解沉井下沉过程中的局部冲刷深度具有重要的工程意义和实用价值。通过河工模型试验分析了大型水中深井下沉过程中的局部冲刷情况,并提出了相应的计算公式。施工期间对河床的局部冲刷进行了监测,监测数据表明模型试验的结果基本可靠,并根据实际局部冲刷数据,提出了有关的沉井施工建议。  相似文献   

18.
马鞍山长江公路大桥北锚碇沉井下沉施工技术   总被引:2,自引:1,他引:1  
在马鞍山长江大桥北锚碇沉井基础下沉施工过程中,根据地层的深入和地质情况变化,先采取沉井四周布置降水井、水力吸泥机取土的排水下沉法,后期则采取搭设钢平台、安装龙门吊等设备进行不排水吸泥下沉的方法,终沉阶段启动空气幕助沉措施,确保了沉井下沉的稳定,在加快施工进度、提高工程质量、降低施工成本等方面取得了显著效果.  相似文献   

19.
武汉鹦鹉洲长江大桥北锚碇新型沉井基础设计   总被引:1,自引:1,他引:0  
武汉鹦鹉洲长江大桥主桥为三塔四跨悬索桥。该桥北锚碇基础经多方案比选采用多圆孔环形截面新型沉井结构。沉井中间大圆孔内设置十字形隔墙,圆环内沿圆周均布有小直径井孔。沉井总高43 m,共分8节,第1节为钢壳混凝土沉井,第2~8节均为钢筋混凝土沉井。北锚碇施工中采用不排水下沉、井壁增加空气幕等措施减小施工难度及风险。采用软件FLAC3D对沉井施工过程进行数值模拟分析,评估施工安全性能、施工引起的环境效应及运营加载后锚碇基础的变形等。计算结果表明,沉井分节下沉施工过程中其结构、地面变形均满足规范要求,施工可有效避免对周围建筑物和长江大堤的不利影响。  相似文献   

20.
马鞍山长江公路大桥北锚碇沉井基础施工中,沉井不排水下沉终沉阶段采用空气幕辅助下沉.该沉井采用3次接高、3次下沉的工艺,在第2节沉井接高时,在其井壁外侧布置竖向风管、水平风管和气龛,并在后续沉井接高中将竖向风管相应接长.终沉阶段向风管内通人压缩气体,气体从气龛孔喷出后使井壁与土壤之间的侧摩阻力减小,从而达到促使沉井快速下沉的目的.沉井下沉中应用空气幕对加快沉井施工进度、提高工程质量、降低工程造价方面有显著成效.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号