首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
有轨电车新型嵌入式轨道钢轨抗倾覆性能分析   总被引:1,自引:1,他引:0  
新型钢轨嵌入式轨道中未设置扣件系统,而采用聚氨酯填充材料将钢轨嵌固于承轨槽内,故钢轨的抗倾覆性能很大程度上取决于聚氨酯材料的稳定性,必须对其进行检算。基于钢轨稳定性理论,建立三维有限元计算模型,分析列车垂向偏心荷载和横向荷载共同作用下钢轨的抗倾覆性能。研究结果表明:嵌入式轨道中钢轨的抗倾覆性能受诸多因素影响,其中垂向荷载偏心距和聚氨酯材料的弹性模量起控制作用,轨腰楔形块间距对钢轨抗倾覆性能的影响很小。荷载作用点处轨头横移量随偏心距的增大而增大,随聚氨酯材料弹模的增大而减小。为保证钢轨不致在组合荷载作用下发生倾覆,建议聚氨酯填充材料弹性模量的取值范围为5~15 MPa。  相似文献   

2.
嵌入式轨道作为一种新型减振轨道结构,改变了传统轨道结构离散支撑特性。调轨组件是嵌入式轨道精调施工、状态保持和槽内维护的关键部件,其参数的优化设计对改善承轨槽系统受力,提高地铁轨道质量和保证轨道平顺性具有重要意义。根据地铁荷载特性,建立嵌入式轨道承轨槽系统空间有限元精细化模型,对调轨组件的弹性模量、关键尺寸和布置间距关键参数进行优化分析。结果表明:为保证结构强度、足够的支撑能力和轨道的高平顺性,调轨组件弹性模量取值范围宜为0.4~0.8 GPa,宽度宜取60~80 mm,间距宜取为600~1 000 mm;每块长约5 m的轨道板中调轨组件组数不宜少于5组。  相似文献   

3.
轨道交通橡胶浮置板式轨道结构动力设计参数研究   总被引:3,自引:0,他引:3  
利用车辆多刚体动力学与浮置板轨道段组合单元的车轨系统竖向振动分析模型,研究车辆移动荷载作用下浮置板厚度、轨下扣件刚度、橡胶支座刚度对轨道结构竖向振动的影响.在此基础上,提出浮置板厚度、轨下扣件刚度、橡胶支座刚度的合理取值范围.研究结果表明:随着浮置板的厚度增加,浮置板的位移和加速度呈下降趋势,橡胶支座反力则增大,但对钢轨的影响不大,浮置板厚度应取为0.3~0.5 m较合适;轨下扣件刚度对钢轨和轮轨竖向作用力影响较大,对浮置板影响很小,轨下扣件刚度应取较小值,以40 MN/m为宜;橡胶支座刚度对浮置板和钢轨的动力学响应及橡胶支座反力和轮轨竖向作用力都有很大影响,橡胶支座刚度应优选20 MN/m左右较合理.  相似文献   

4.
轨道交通列车过岔振动特性研究   总被引:1,自引:1,他引:0  
建立了列车过岔有限元模型,利用轨道振动微分方程原理,定性研究城市轨道交通中不同轨下刚度和列车速度在道岔辙叉区对轨道振动特性的影响.分析了心轨尖端、心轨跟端及辙叉区共用垫板中心等特殊部位处的轨道振动特性.结果表明:列车速度的变化对钢轨最大竖向加速度和岔枕最大竖向加速度的影响较大;而辙叉区轨下刚度的变化对钢轨最大竖向位移、岔枕最大竖向位移及岔枕最大竖向加速度有较大的影响.  相似文献   

5.
为研究简支梁桥上嵌入式轨道无缝线路钢轨伸缩变形和受力的分布规律,基于梁轨相互作用推导其伸缩变形和受力的解析算法,求解钢轨纵向位移、梁轨相对位移及钢轨伸缩力,分析梁体温度变化、纵向刚度比、桥墩纵向刚度以及桥梁跨数对嵌入式轨道结构伸缩变形和受力的影响。研究结果表明:解析算法求解结果与有限元分析结果吻合良好;梁体温度变化对嵌入式轨道结构的变形和受力影响显著,而纵向刚度比、桥墩纵向刚度和桥梁跨数的影响较小;梁轨相对位移极值可作为简支梁上嵌入式轨道无缝线路的设计限值指标。  相似文献   

6.
轨道结构参数对钢轨和轨枕振动特性的影响   总被引:1,自引:0,他引:1  
建立轨道结构三维实体有限元模型,同时考虑钢轨、轨下垫层、轨枕和道床,并与已有轨道结构振动模型的数值结果进行比较。结果表明,本文模型的数值结果在高频部分较合理,能够反映轨道结构高频振动特性。分析不同轨道结构参数对钢轨和轨枕振动特性的影响,这些轨道结构参数主要包括钢轨材料损失因子和钢轨质量、轨下垫层损失因子和垂向刚度、轨枕质量和损失因子、道床的刚度与阻尼特性等。分析结果表明,轨道结构参数的改变对钢轨和轨枕在不同频域范围影响不同,通过合理的轨道结构系统参数优化设置,可达到减振降噪效果。相关计算和分析结果可为低噪声轨道的设计提供依据与参考。  相似文献   

7.
本文应用刚柔多体混合建模理论,建立道岔区车辆和钢轨动态空间仿真模型,在模型中考虑了道岔区尖轨和心轨部位轨道的几何不平顺,考虑了由于道岔区钢轨断面分布不均匀、道岔结构特征产生的结构不均匀以及轨枕长度的变化、轨下基础弹性分布等参数变化引起的轨道竖向刚度不均匀,研究了这种轨道竖向刚度不均匀和几何不平顺对列车不同速度下的轨道结构系统动态刚度的影响,以及在不同的速度下对列车通过道岔时车辆的振动响应、轮轨作用力和道岔区轨道结构各部分振动的影响,并分析竖向刚度不均匀对列车运行通过道岔区平稳性变化的影响规律,为研究道岔区轨道结构刚度优化提供理论依据.  相似文献   

8.
基于现场锤击试验的地铁轨道振动特性分析及参数研究   总被引:3,自引:3,他引:0  
近来,由于轮轨共振而产生的地铁钢轨异常波磨问题备受关注。轨道结构动力特性分析是开展轮轨耦合振动研究的基础,地铁轨道结构的动力特性取决于各组成部分(钢轨、扣件、轨枕和道床等)的物理特性及其组合形式。基于轨道结构的周期性频域解析模型,结合北京地铁在线锤击试验,通过计算轨道结构在脉冲荷载下的频响函数,对0~2000Hz频段内轨道结构的动力响应主频进行分析;并通过改变轨道结构参数,分别研究了不同轨道结构参数对各轨道结构动力响应主频的影响情况。研究结果表明:轨下支撑刚度对钢轨共振频率影响较大,枕下支撑刚度对轨道系统共振频率影响较大,轨下和枕下支撑阻尼仅能改变各共振频率点的响应幅值;轨枕支撑间距对pinned-pinned共振频率影响较大,对其他共振频率点的影响较小。  相似文献   

9.
研究目的:因桥上无缝线路梁轨相互作用较为复杂,桥梁和轨道结构的受力与变形特性成为国内外学者的热点研究问题。为研究温度荷载、列车荷载和制动荷载作用下轨道结构的受力与变形规律及影响因素,根据嵌入式轨道的特点,本文通过建立嵌入式轨道桥上无缝线路有限元模型,计算伸缩力、挠曲力和制动力三种工况下轨道结构的受力与变形情况,并分析梁体温差、高分子材料纵向阻力和墩台纵向刚度对伸缩力的影响。研究结论:(1)嵌入式轨道的线路纵向阻力和垂向刚度均为线性变化,且轨板相对位移限值为6.2 mm;(2)轨道结构的受力和变形均随着梁体温差的增加而线性增加,允许梁体温差为38℃;随着线路纵向阻力的增加,钢轨纵向位移和伸缩力逐渐增大,而轨板相对位移则逐渐减小;桥梁墩台纵向刚度对轨道结构的受力和变形影响较小;(3)在挠曲力和制动力工况下,轨板相对位移和钢轨附加力均较小,故在设计时应重点关注伸缩力工况;(4)当梁体温差和轨温变化幅度为30℃时,钢轨强度和轨板相对位移均满足要求,因此在32 m简支梁上铺设有轨电车嵌入式轨道无缝线路是可行的;(5)本研究成果对桥上有轨电车嵌入式轨道设计具有参考价值。  相似文献   

10.
介绍了一种钢轨内外侧结构非对称设计的新型轨道减振扣件.该扣件由承轨板、橡胶圈和底座三部份组成.其中,承轨板用于安装固定钢轨,底座通过锚固螺栓固定在道床上,橡胶圈将承轨板和底座通过粘接硫化成一个整体.该设计的显著特点是在轨道的横向采取非对称结构,以提高轨道的横向稳定性.对该扣件进行有限元分析计算及静刚度试验,结果表明,减振扣件的垂向刚度与横向刚度达到和谐的统一,既保证轨道安全又能提高扣件的减振性能.  相似文献   

11.
为满足160 km/h地铁设计对轨道减振性能的要求,提出了钢轨嵌入式钢弹簧浮置板轨道结构设计方案,并研究了钢轨支承形式及轨下连续支承参数对轨道结构减振性能的影响。结果表明:钢轨支承形式(离散支承、连续支承)对钢轨和轮对振动加速度影响较小;随着轨下连续支承刚度和阻尼的降低,轮轨力和轮对加速度主频向低频移动,同时轮对及浮置板在63 Hz以上的振动减轻,但会加剧钢轨在250 Hz以上的振动;实际设计中对减振性能要求较高的地段可选用钢轨嵌入式钢弹簧浮置板轨道,并适当降低轨下连续支承刚度和阻尼来提升轨道结构的减振性能。研究成果可为160 km/h市域地铁快线中钢轨嵌入式钢弹簧浮置板轨道的选用和轨下连续支承参数的设计提供参考。  相似文献   

12.
以往地铁线路轨下结构研究过于简化,只考虑轨下弹性垫板单一变量对轨道动力学的影响,没有综合考虑刚度和阻尼参数对轨道结构动力学性能的影响。在车辆-轨道耦合系统动力学理论基础上,运用动力学软件SIMPACK建立地铁车辆-板式无砟轨道模型,分析轨下弹性垫板刚度在30~70 MN/m,阻尼在60~80 k N·s/m范围内变化对板式无砟轨道结构动力学性能的影响。研究显示,轨下垫片刚度敏感的动力参数顺序为轨道板垂向加速度、钢轨垂向加速度、轨道板垂向位移、钢轨垂向位移和轮轨力。  相似文献   

13.
研究目的:高速铁路桥梁竖向变形会引起轨道不平顺,进而影响高速铁路安全高效运营。以32 m高速铁路简支梁桥为研究对象,基于已有的桥梁竖向变形与轨面几何形态的映射解析模型,定量化研究了多种桥梁竖向变形模式的变形幅值、梁端悬出长度及砂浆层竖向刚度等关键参数对CRTSⅠ型板式无砟轨道结构轨面平顺性的影响,提出了控制钢轨变形的措施,为综合治理高速铁路桥梁钢轨变形提供理论参考。研究结论:(1)桥墩沉降、梁端竖向转角和梁体错台均会导致钢轨跟随梁体变形,并在变形区域边界上出现钢轨上翘;(2)钢轨变形量与桥梁竖向变形幅值呈正比,控制钢轨变形的关键在于减小桥梁竖向变形;(3)通过适当减小梁端悬出长度和减小砂浆层竖向刚度等方式,可以达到控制轨面变形的目的;(4)本研究成果可为高速铁路桥梁钢轨竖向变形控制提供理论参考。  相似文献   

14.
为建立更加经济合理的有轨电车嵌入式轨道路基共同受力模式,获得最佳参数组合,分别建立承轨槽有限元模型和弹性点支承轨道模型,通过数据拟合得到高分子填充材料与等效扣件刚度之间的关系,建立嵌入式轨道路基有限元模型,采用正交试验方法研究道床板厚度、高分子填充材料弹性模量、基床表层弹性模量、基床底层弹性模量、基床表层厚度、基床底层厚度这6种因素对嵌入式轨道路基一体化共同受力和变形分布规律的影响。研究结果表明:综合考虑嵌入式轨道路基设计的技术性指标和经济性指标、极差分析结果和路基基床动应力要求,确定最佳嵌入式轨道路基设计方案为道床板厚度0.18m,高分子材料弹性模量7 MPa,基床表层弹性模量140 MPa,基床底层弹性模量90 MPa,基床表层厚度0.3 m,基床底层厚度0.6 m。  相似文献   

15.
不同轨下基础轨道连接的动力特性分析   总被引:2,自引:0,他引:2  
建立两类不同轨下基础轨道连接的动力特性分析计算模型,确定了动力学性能评价指标,分析由轨下基础沉降差引起的钢轨初始变形以及行车方向,行车速度和轨道刚度变化对轮轨系统动力性能的影响,提出确定轨道过渡段长度的方法。  相似文献   

16.
为调查嵌入式轨道的槽型轨焊接不平顺的安全控制限值及焊接不平顺现代对有轨电车及嵌入式轨道动力作用的影响,建立现代有轨电车/嵌入式轨道耦合动力学模型。计算模型中,现代有轨电车简化为多刚体动力系统,嵌入式槽型轨被视为连续弹性支承基础上的Timoshenko梁,整体道床用三维实体有限元单元模拟,钢轨填充材料用三维粘弹性弹簧-阻尼单元模拟,嵌入式道床板底部的致密混凝土底座及路基简化为等效的弹簧-阻尼单元。基于动力学仿真计算,以GB5599-1985规定的车辆动力学性能指标为评定准则,对槽型轨焊接不平顺的安全限值进行详细分析。计算结果表明,对于短波波长小于0.2 m的焊接不平顺,1 m范围内槽型轨轨顶面容差的建议控制限值为0.2 mm;对于短波波长大于0.2 m的焊接不平顺,1 m范围内槽型轨轨顶面容差的建议控制限值为0.3 mm。  相似文献   

17.
为适应城市轨道交通运营需求,嵌入式轨道结构得到了广泛应用。该轨道结构采用弹性体将钢轨嵌固在槽中,为降低造价和节省材料,弹性体中一般还需设置PVC管。利用有限元模型,对不同PVC埋置方式对钢轨位移、轨旁高分子材料受力特性、轨道板受力特性进行对比分析。结果表明:不同埋设方式的选择对轨旁高分子复合材料的应力大小影响较小,但对轨道板的最大拉应力影响较大。复合材料弹性模量增大虽能减小钢轨的横向位移,但会增大轨道板拉应力,因此取值不宜过大。考虑到现场施工、高分子复合材料老化等原因引起的高分子复合材料与其他材料的临界面粘结失效,轨道结构宜采用钢轨外侧埋设PVC管,复合材料弹性模量取值范围宜取3~6 MPa。  相似文献   

18.
轨下支承参数对钢轨声振特性影响研究   总被引:1,自引:0,他引:1  
钢轨辐射噪声是轮轨噪声的主要组成部分,轨下支承参数对钢轨的振动与声辐射有着较大的影响。为研究轨下支承参数对钢轨声振频域特性的影响,基于FEM/BEM方法,建立钢轨振动力学模型和声学边界元模型,分析轨下扣件支承间距、支承刚度和支承阻尼对钢轨声振特性的影响规律。结果表明:扣件支承间距对钢轨的声振特性影响不明显;在20~200 Hz之间,合理大小的扣件支承刚度可以有效地减少钢轨振动与声辐射;合理大小的扣件支承阻尼可以有效地减少钢轨振动的频率范围为20~2 000 Hz,合理大小的扣件支承阻尼可以有效地减少钢轨声辐射的频率范围为100~1 000 Hz;扣件支承阻尼对钢轨声振特性影响的频域明显要宽于扣件支承刚度。  相似文献   

19.
客运专线无砟轨道系统设计   总被引:3,自引:1,他引:2  
根据我国客运专线的工程特点,无砟轨道结构选型应遵循施工性、维护性、动力性、适应性和经济性的5个基本原则,并给出2类无砟轨道的性能.在研究确定无砟轨道设计理论和原则的基础上,建议设计轮重取静轮重的3倍、疲劳检算轮重取静轮重的1.5倍.板式无砟轨道不同弹性模量的砂浆垫层对轨下基础刚度的影响不同,建议研发新型填充层材料.合理确定无砟轨道的弹性,建议轨下基础刚度的合理范围为20~30kN·mm-1.通过定期打磨钢轨和钢轨无缝化,降低噪音;通过降低轨道刚度、提高轨道参振质量,降低线路下部结构物的振动.无砟轨道的设计寿命应为60年,为此应制定相应的维修标准和管理办法.  相似文献   

20.
基于多体动力学与有限元法,利用多体动力学软件Simpack建立箱型梁及U型梁的三维车轨桥耦合振动仿真模型,对列车过桥时箱型梁、U型梁及轨道结构竖向和横向振动进行分析,得到桥梁振动空间分布情况,进一步研究扣件、板下弹性支承与桥梁支座参数对箱型梁和轨道结构的振动规律,并给出各参数的合理取值范围。研究结果表明:列车以80 km/h的速度过桥时,箱型梁与U型梁结构振动空间分布情况差异明显,应重点关注钢轨、轨道板以及箱梁翼板与腹板的竖向振动,U型梁翼缘处横向振动不容忽视;增大扣件刚度能明显减小钢轨变形,但过大的刚度会使箱梁与轨道结构的振动加剧,建议扣件竖向刚度取值为20~50 MN/m;增大板下弹性支承刚度可明显减小轨道板的振动,但过大的刚度会加强钢轨振动,建议板下弹性支承竖向刚度取值为(1.0~1.5)×10~3 MN/m;增大支座竖向刚度在一定范围内可减小轨道板与箱梁的振动,但过大的支座刚度反而会使桥梁振动加剧,不利于减振,建议支座竖向刚度取值为(3~4)×10~3 MN/m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号