首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 520 毫秒
1.
铁路盾构隧道单、双层衬砌纵向力学性能的模型试验研究   总被引:1,自引:0,他引:1  
以广深港客运专线狮子洋水下盾构隧道为背景工程,采用轴向等效刚度模型,开展盾构隧道单、双层衬砌纵向力学性能模型试验,并结合数值模拟计算,研究在软硬交替地层且地表有局部附加荷载的复杂情况下,单、双层衬砌隧道纵向沉降与弯矩的变化规律.结果表明:隧道处于软硬交界地层中时,单层衬砌的纵向沉降受地层条件的变化作用明显,较大的沉降量和沉降差均发生在软土侧;双层衬砌可在一定程度上抵御受地层条件的变化作用而产生的不均匀沉降,隧道纵向中心最大沉降量和沉降差均较小;管片衬砌内侧施加连续的混凝土内衬后,隧道所受纵向弯矩成倍增大,最大正弯矩出现在隧道中央偏向软土侧,且混凝土内衬承受绝大部分弯矩;当荷载距隧道轴线3倍洞径以内时,会对隧道的纵向变形及内力产生影响.  相似文献   

2.
针对郑州地铁某盾构区间隧道,在隧道覆土厚度、地层、地下水位和其他条件相同情况下,采用均质圆环法和梁-弹簧模型两种方法对管片衬砌的内力和变形进行了计算比较。均质圆环法弯矩较大,相应变形和轴力较小。均质圆环法与圆环刚度有效系数相关,有效系数越大,弯矩越大,变形和内力越小。梁-弹簧模型不仅考虑环向接头刚度还考虑了纵向接头刚度(径向和切向),与实际情况较为接近。  相似文献   

3.
为得到基坑开挖对邻近下卧既有隧道变形受力影响,提出一种可预测基坑开挖对下卧隧道竖向变形影响的简化计算方法。采用Mindlin解获得基坑开挖引起既有隧道轴线处的附加应力,将隧道假定成无限长Euler-Bernoulli梁搁置在Vlasov地基;引入隧道侧向土体的影响,考虑既有隧道两端约束,进一步得到隧道竖向变形差分解。工程案例研究表明:与既有文献中有限元数据和实测数据对比,验证了该方法计算结果的合理性;与将隧道搁置在Vlasov地基模型(EB-V模型)和Winkler(EB-W模型)地基模型的解析计算结果比较,本文方法计算结果更贴近实测数据。进一步参数研究表明:隧道与基坑中心间距、隧道埋深以及土体模量的增大会引起隧道竖向变形及内力减小;随着既有隧道抗弯刚度逐渐增大,隧道竖向变形会逐渐减小,但会引起既有隧道内力增大。  相似文献   

4.
为研究盾构下穿对上覆既有隧道变形的影响,首先,采用修正Loganathan公式求解盾构开挖引起既有隧道轴线处的土体自由位移;其次,把土体自由位移转化成附加应力施加在既有隧道上,将既有隧道简化成无限长Euler-Bernoulli梁搁置在Kerr地基模型上,引入隧道轴力的二阶效应,根据既有隧道两端自由的约束条件提出盾构下穿引起既有隧道受力变形解析解。研究结果表明:与既有文献实测数据验证对比,本文所提方法计算结果与实测较为符合;与本文方法退化解析比较,本文方法预测结果更具有优越性。参数分析得到如下结论:地层损失率增大,既有隧道位移及其内力呈线性增大趋势;随着隧道开挖轴线埋深增加,既有隧道位移和内力均会大幅度减小;随着下穿隧道开挖直径增大,上覆既有隧道变形及其内力显著增大。  相似文献   

5.
针对紧接盾构隧道或盾构穿切桩基工程中附加外力作用下的盾构隧道纵向非均匀变形和受力问题,利用计算解析方法,将盾构隧道视为置于Pasternak双参数地基上的铁摩辛柯梁,同时引入修正等效连续化模型和传递矩阵法,提出一种新的盾构隧道纵向变形计算模型,并采用室内模型试验的方法进行验证。结果表明:模型试验中,在集中荷载与围压共同作用下,整个隧道处于弹性变形阶段,各环管片收敛变形、拱顶和拱底竖向位移、环缝错台量均随集中荷载的增加而近似线性增大,并以集中荷载为中心沿纵向呈对称分布,变形趋势与计算结果相同,且2种方法下环缝错台量最大相对误差仅为8.75%;2种方法得到的结果在分布特征和量值上基本一致,验证了计算模型的可行性。该计算模型能够反映土弹簧间的剪切作用、收敛变形对隧道纵向变形刚度的影响及接头的非连续性,可对盾构隧道纵向变形和内力进行预测分析,并为紧接盾构隧道工程中既有盾构隧道的安全评估提供理论指导。  相似文献   

6.
基坑开挖引起的土体卸载会使得下卧既有隧道受力变形,甚至引起既有隧道管片的开裂断裂.将隧道简化成既能考虑纵向刚度又能考虑剪切变形的Timoshenko梁,地基采用三参数Kerr地基模型,采用有限差分法并考虑隧道两端的边界条件获得隧道纵向变形解析解.通过与有限元数据、既有地基模型理论、实测工程进行对比,验证了该方法的合理性...  相似文献   

7.
概述了软土地层盾构隧道纵向沉降引发的各种问题,分析了有关隧道纵向沉降方面的主要研究成果.其中包括各种软土隧道纵向结构的理论解析分析模型,土隧道结构共同作用的解析模型等.在介绍目前研究不足的基础上,指出需要通过相似程度更高的模型试验、更多的现场实测数据、与实际土层性质更吻合的地基模型,进一步研究软土地层盾构隧道的纵向沉降特性、纵向结构性能.  相似文献   

8.
地铁隧道工程开挖过程中地下管线的受力情况分析   总被引:1,自引:0,他引:1  
地铁隧道工程开挖过程中的地层运动对地下管线影响较大。基于温克尔弹性地基梁经典理论,着重分析了隧道工程开挖影响下的地下管线受力情况,推导出了地下管线的沉降、弯矩和剪力的表达式。结合西安地铁3号线延兴门站—咸宁路站区间具体工程,分析了不同因素对管线变形影响的规律。研究表明:地下管线的不均匀沉降及内力随管线与隧道倾角增大而增大,管线刚度变化对管线沉降影响极小。  相似文献   

9.
为了分析基坑开挖对邻近地铁隧道纵向变形的影响,首先采用Mindlin解推导得到基坑开挖引起的隧道纵向附加应力计算公式;然后基于双面弹性地基梁模型建立地铁隧道的纵向变形方程,并应用有限差分法和MATLAB编程计算出隧道的纵向位移;最后通过有限元算例和工程实例对理论方法的合理性进行验证。结果表明:提出的理论计算方法与数值模拟结果和现场实测值均吻合良好;采用双面弹性地基梁模型分析隧道纵向变形比Winkler弹性地基梁模型更具优越性。  相似文献   

10.
以广州轨道交通21号线金坑站—镇龙南站区间土压平衡盾构下穿均和村房屋群为工程依托,采用数值模拟方法研究盾构隧道侧穿房屋群基础沉降特性,对比分析不同隧道开挖顺序下房屋基础沉降响应规律,并结合现场实测数据进行对比分析,揭示软弱地层盾构隧道侧穿房屋群施工扰动特性。研究结果表明:(1)在软弱地层双线隧道侧穿既有建筑物时,优先施作受荷载作用显著侧隧道,可有效降低既有建筑物变形;(2)在软弱地层盾构隧道掘进过程中,地表既有建筑物产生的主要沉降位于隧道穿越既有建筑物前3倍洞径至穿越建筑物后6倍洞径范围内,在此区段内可加强监测力度,根据实际需求采取降低掘进速度或适当加大注浆量的控制措施来控制既有建筑物变形;(3)受软土地层特性和施工同步注浆浆液固化的影响,在盾构穿越监测点10 m左右监测点沉降达到最大,随着浆液强度的增大,存在沉降回弹现象。  相似文献   

11.
沉管隧道纵向软弱土层往往分布不均匀,并且软土地基的性状随时间变化,当前修建的港珠澳沉管隧道为通过接头连接的半刚性节段,接头作为管体中最薄弱的部分,易发生较大差异沉降。考虑到沉管隧道受力变形受到随时间变化的软土地基性状的影响,将管节简化为Timoshenko梁模型,将土层简化为Kerrr地基模型,考虑地基刚度随时间的变化及接头的受力,推导出不同边界条件影响下隧道的受力与变形方程,进一步分析沉管隧道的管节差异沉降。以港珠澳沉管隧道工程为例,计算建设期全回淤工况下的沉管隧道节段-接头竖向位移,通过与实测数据对比,经分析表明:1)建设期的接头传递前后节段间的竖向差异沉降和转角差;2)本文理论模型的计算沉降和实测沉降变化趋势相近,基于理论模型的计算沉降值大约为地基沉降值的5/6;3)不考虑节段接头影响时,当等效弯曲刚度折减系数取1/7,等效剪切刚度折减系数取1/14,得到的隧道纵向变形基本等价于考虑接头影响的管节节段变形;4)对于长大沉管隧道,柔性边界模型计算沉降值伴随边界-转角刚度的增大而减小。因此,基于Kerr地基Timoshenko梁假设的简化模型能更好地描述沉管隧道节段-接头竖向位移特征...  相似文献   

12.
基于Winkler地基模型,假定地基梁与地基土体间的摩阻力沿有限梁长呈线性分布,考虑弹性地基梁与地基土体之间的水平摩阻效应,建立集中荷载作用下地基梁挠曲变形及内力计算模型和相应的变形控制微分方程.采用幂级数法,分别给出计算弹性地基梁竖向挠曲变形、转角、弯矩、剪力的幂级数半解析解.将本文方法与传统弹性地基梁法进行比较以验证本文方法的可行性,并进一步分析梁土间摩阻效应对弹性地基梁位移及内力的影响.分析结果表明,梁土接触面上的摩阻力对地基梁的位移及内力有一定程度影响,且地基土越坚硬,梁土接触面越粗糙,该摩阻效应对梁位移及内力的影响也就越大.  相似文献   

13.
盾构隧道管片设计力学模型有均质圆环模型、多铰圆环模型、梁-弹簧模型等.在分析上述力学模型基础上,从管片接头截面力学性质出发,提出一种盾构隧道力学分析方法,建立非均质等效梁模型,即接头处单元与非接头处单元均采用等效参数不同的梁单元模拟,并从理论上推导接头处梁单元高度、宽度、弹性模量等截面性质等效参数解析式.根据现场试验数据,采用正交试验反演分析截面性质等效参数,验证理论解析式的有效性,得到一定条件下截面性质等效参数.将该模型内力结果与现场试验结果及梁-弹簧模型结果进行对比得出:非均质等效梁模型控制性截面内力值比现场试验值偏于安全,其安全系数介于现场试验值与梁-弹簧模型之间.结果表明:该模型可使管片接头力学性质更直观、明确,可在工程中推广应用.  相似文献   

14.
为探究大曲率盾构隧道在急转弯过程中对邻近桥梁的影响,以上海某急转弯隧道穿越桥梁工程为背景,基于Midas数值模拟软件,建立急转弯隧道近穿桥梁三维数值模型,分析急转弯隧道施工对桥梁桩基的影响,并结合现场施工方案,分析所采用地层加固措施对减小桥梁沉降变形控制效果,主要结论如下:(1)受盾构隧道近穿既有桥梁影响,地表沉降槽宽度为3.44D(D为隧道直径);在盾构穿越桥梁时对地层扰动最大,地表累计沉降量占最大沉降量的90%。(2)盾构近接既有桥梁,桩身变形主要以Y向(纵向)变形为主,在盾构穿越桥梁时,桩身倾斜变形量最大。(3)采用MJS工法对土体进行加固之后,地表沉降量、桥梁桩基水平位移量大幅降低,从数值模拟结果看,桥梁沉降变形减小38%,隧道结构上浮量减小79.5%。  相似文献   

15.
类矩形盾构隧道施工可能会导致明显的土体沉降,并进一步影响周围既有建筑物的安全。基于Verruijt解和积分法推导得到类矩形盾构隧道开挖作用下的土体响应解析解,并充分考虑土体等量径向收缩、类矩形隧道竖向、水平向以及旋转位移4个变形分量的影响,以全面描述复杂施工或地层情况下类矩形盾构开挖引发的土体位移模式。利用实际工程实测数据验证解析解的有效性,并通过参数分析研究各个变形参数对地表土体沉降的影响。研究结果表明,解析理论计算结果与实测数据较为吻合,可较好地评估类矩形盾构引发的土体沉降,类矩形隧道的水平位移和旋转位移会使地表沉降呈现非对称形态,并会使最大地表沉降增大。  相似文献   

16.
以广州市轨道交通某区间盾构隧道下穿高速铁路路基为背景,通过建立三维有限元模型,分析了采取地层加固措施对于控制既有高速铁路路基变形的效果。通过计算分析可知,加固区的存在能够有效控制盾构隧道施工引起的既有铁路路基纵向和横向沉降及不均匀沉降,从而保证既有铁路安全运营不受影响。  相似文献   

17.
采用有限差分软件FLAC3D建立三维数值模型,模拟了兰州地铁1号线盾构隧道在砂卵石地层中下穿既有地下通道的施工过程,对比分析基底预加固和未加固2种工况下下穿施工对地下通道的影响和地基沉降变形情况,并且进一步分析了未加固时自由场地、已有地下通道2种场地条件下施工引起的地下通道基底变形情况。结果表明:基底预加固可使地下通道不均匀变形及整体沉降明显减小;地下通道的存在有提高地层整体刚度、抵御部分沉降变形的能力。工程实践表明,预加固有效控制了最大沉降量、最大沉降差和地层变形范围;地下通道变形均小于规范限值,整体稳定性良好。  相似文献   

18.
为有效评估新建隧道下穿施工对既有隧道的影响,确保既有隧道运营安全,将既有隧道简化为放置在Pasternak地基模型上的Euler-Bernoulli梁,基于两阶段分析法提出新建隧道下穿施工引起既有隧道力学响应的计算方法。通过与现场监测和既有方法的结果进行对比,验证了本文方法的准确性。研究结果表明:当新建隧道开挖面位于既有隧道中点时,既有隧道差异沉降达到最大值,转角曲线关于既有隧道中心线对称;在新建隧道掘进过程中,既有隧道的最大正弯矩和最大负弯矩分别出现在既有隧道长度的2/5和3/5位置附近,最大负剪力出现在既有隧道中点处;当新建隧道开挖面到达既有隧道长度的1/4和3/4位置时既有隧道产生最大正剪力;随着隧道轴线夹角和相对弯曲刚度增大,既有隧道的内力显著增大;增大隧道竖向净距有利于控制既有隧道的力学响应。本文方法考虑了新建隧道掘进过程和新建隧道与既有隧道的不同相对位置,可为类似穿越工程风险防控提供理论依据。  相似文献   

19.
基坑开挖时会造成地层扰动,进而引发临近盾构隧道发生位移和环间错台,利用剪切错台模型将盾构隧道简化为由剪切弹簧连接的地基梁,以此来描述盾构隧道变形特征,结合最小势能原理,建立盾构隧道的位移方程,求得临近隧道的水平位移值、环间剪力及错台量。研究表明:建模时考虑基坑围护对卸荷传力路径的影响后,计算得到的盾构隧道水平位移值可以较好地反映盾构实际变形;盾构隧道在水平位移最大值处几乎不发生错台变形,该处的管片环之间没有相互错动,也就不会产生剪切力;盾构隧道的错台量与环间剪切力成正比;在水平位移曲线反弯点处的盾构隧道环间错台量与剪力值最大;临近隧道的基坑侧壁卸荷是导致隧道产生水平向位移的主要原因。  相似文献   

20.
为更准确地反映盾构施工扰动下高速铁路无砟轨道的变形,采用给出假定、公式推导、数值验证相结合的方法:(1)将路基-轨道的变形传递假定为3个阶段,即无变形阶段、沉降槽形成阶段、轨道下沉阶段,认为轨道结构最终是否发生脱空取决于路基沉降槽的大小;(2)基于假定,结合梁的挠曲线方程、弹性地基梁理论以及Peck公式推导相应的解析计算方法,并应用在典型地层条件中计算上部CRTSⅡ型纵连板式无砟轨道的最大沉降值;(3)建立相应的地层-路基-轨道三维数值模型,计算轨道最大沉降值,并与同工况下的解析计算结果进行比较。结果表明,相较于数值仿真结果,主体砂卵石、主体泥岩2种地层条件下轨道最大沉降值的解析计算结果误差分别为12%和5%,说明了假定的合理性和解析方法的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号