首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
建立一种桥上CRTSⅡ型板式无砟轨道纵向力学模型,取消部分区段的扣件纵向阻力以模拟维护作业对轨道和桥梁受力的影响。利用所建力学模型对一座80 m+128 m+80 m大跨度连续梁桥上CRTSⅡ型板式无砟轨道松开扣件进行线路维护作业的纵向力变化进行分析,结果发现:钢轨纵向力最大变化值为64.82 k N,相当于轨温变化3.38℃产生的温度力;底座板纵向力最大变化值为52.75 k N;剪力齿槽和桥梁固定支座的纵向力变化均在20 k N以下。松开扣件维护作业对钢轨、底座板、剪力齿槽和固定支座的强度影响可承受,按现行《高速铁路无砟轨道线路维修规则》对大跨度连续梁桥上CRTSⅡ型板式无砟轨道松开扣件进行维护作业是可行的。  相似文献   

2.
建立了适用于桥上CRTSⅡ型板式无砟轨道的无缝线路—无砟轨道—桥梁纵向相互作用力学模型,分析连续松开扣件进行改道、垫板作业对32 m简支梁桥上CRTSⅡ型板式无砟轨道纵向力的影响。结果表明:连续松开40个扣件,钢轨纵向力降低了24.56 kN,相当于轨温变化1.3℃产生的温度力;纵连底座板纵向力增加了26.59 kN,增加值远小于其设计检算时所采用的纵向力;剪力齿槽和桥梁固定支座的纵向力变化比钢轨和底座板小,松开扣件后剪力齿槽和桥梁固定支座的纵向力变化均10 kN,这一变化与其承载能力相比几乎可以忽略。可见,按现行《高速铁路无砟轨道线路维修规则(试行)》连续松开扣件进行线路维护作业对无砟轨道和桥梁的强度影响不大。  相似文献   

3.
研究目的:为研究不同类型单元式无砟轨道无缝线路在大跨桥上的适应性,本文建立无缝线路-无砟轨道-桥梁空间耦合分析模型,对温度荷载作用下CRTSⅠ型和CRTSⅢ型板式无砟轨道各层纵向受力与变形、层间错动位移以及限位结构受力进行对比分析,并对运营过程中可能出现的扣件纵向阻力增加对两种无砟轨道在大跨桥上的适应性进行比较。研究结论:(1)两种无砟轨道无缝线路在连续梁端处受力与变形最大,但二者之间的差异较小;(2)扣件纵向阻力的增加将带来连续梁端位置处无缝线路受力增加,变形量减小;(3)CRTSⅢ型板式无砟轨道层间限位刚度大于CRTSⅠ型板式无砟轨道,因此扣件纵向阻力增加导致的CRTSⅠ型板式无砟轨道层间错动位移增加更加明显;(4)梁端限位结构在升降温过程中纵向受剪明显,其中CRTSⅠ型板式无砟轨道梁端半圆形凸台因单侧承力,纵向剪切效应更加显著,且随桥上扣件纵向阻力的增加而急速增加;(5)总体看来,两种无砟轨道的选用对大跨桥上无缝线路设计的影响基本无差异,但在轨道纵向几何形位保持以及大跨梁端限位结构受力方面,CRTSⅢ型板式无砟轨道表现出了较好的适应性;(6)本研究成果可为今后大跨度桥上板式无砟轨道的选型提供理论指导。  相似文献   

4.
基于有限元法,建立多跨简支梁桥上CRTSⅠ型板式无砟轨道无缝线路空间耦合模型,研究列车制动荷载作用下钢轨、轨道板及底座板的受力与变形特性,并对相关影响参数进行分析。研究结果表明:在制动荷载作用下,钢轨制动力的峰值出现在两端桥台及中间活动支座上方,钢轨的纵向位移呈现先增后减的趋势,在中间活动支座达到最大值,钢轨和轨道板的纵向伸缩趋势基本一致,表明扣件起到了很好的约束作用;制动力加载方式对轨道结构纵向力及位移有较大影响,在紧急情况下,应尽量避免两列列车同时在桥上同向制动,以免钢轨承受过大的拉力,防止因相对位移过大而导致扣件失效;采用小阻力扣件对桥上CRTSⅠ型板式无砟轨道的受力是有利的,但要充分考虑轨板相对位移不能过大,保证钢轨在桥台处的爬行能够得到有效控制;随着桥墩纵向刚度的增大,轨道结构的受力随之减小,因此,为改善桥上轨道结构的受力条件,在可能的情况下,应尽量采用纵向刚度较大的低墩桥。  相似文献   

5.
桥上无砟轨道受力比较复杂,桥上无砟轨道无缝线路的稳定性直接影响高速列车的行车平稳与安全。基于有限元法和梁轨相互作用理论,建立了6×32 m混凝土简支梁桥上CRTSⅠ型板式无砟轨道无缝线路空间耦合模型,研究温度荷载作用下钢轨、轨道板及底座板的受力变形特性,并对相关影响参数进行分析。结果表明:在温度荷载作用下,钢轨伸缩力的峰值出现在桥梁墩台及跨中,钢轨的纵向位移呈现先增后减的趋势,在中间两跨达到最大值,钢轨和轨道板的纵向伸缩趋势基本一致,表明扣件起到了很好的约束作用;桥上采用小阻力扣件可改善桥上无缝线路梁轨相互作用,但要充分考虑轨板相对位移不能过大,保证钢轨在桥台处的爬行能够得到有效控制;从减小桥上轨道结构伸缩力及纵向位移考虑,桥梁墩台固定端纵向刚度不宜过大。  相似文献   

6.
研究目的:桥上无缝线路受力比较复杂,桥梁、轨道结构的受力变形成为广泛关注的问题。为研究列车荷载作用下桥上轨道结构的受力变形规律及影响因素,根据多跨简支梁桥上单元板式无砟轨道无缝线路的结构特点,基于有限元法建立多跨简支梁桥上CRTSⅠ型板式无砟轨道无缝线路空间耦合模型,计算列车荷载作用下桥上轨道结构的挠曲力与位移,并分析扣件纵向阻力、墩台顶固定支座纵向水平线刚度以及桥梁跨数等因素对挠曲受力与变形的影响规律。研究结论:(1)在列车荷载作用下,钢轨挠曲拉力及压力最大值分别出现在左侧桥台固定端与最后一跨跨中位置,钢轨位移呈先增后减的趋势,并在两侧路基段逐渐减小至零;(2)采用小阻力扣件可明显降低钢轨及轨道结构的受力,但同时会增加轨板相对位移,需要重点关注钢轨在桥台处的爬行;(3)采用较大纵向水平线刚度的低墩桥对列车荷载作用下桥上轨道结构纵向位移而言是不利的;(4)随着桥梁跨数的增加,轨道结构的纵向力与位移也不断增大,在6跨之前增幅明显,6跨之后增幅明显放缓并逐渐趋于平稳;(5)本研究成果对桥上CRTSⅠ型板式无砟轨道的设计及结构安全性具有参考价值。  相似文献   

7.
以CRTSⅠ型板式无砟轨道为研究对象,参照现有的无缝线路钢轨起道、轨道板抬板技术,采用有限元方法建立起道力学模型。分析不同起道量和扣件松开数量时轨道系统的受力与变形,研究轨温变化幅值与扣件纵向阻力大小对起道作业的影响,为更换损坏轨道板提出合理的维修参数,并提出换板流程。  相似文献   

8.
基于弹性地基梁体理论,考虑宽窄接缝与轨道板之间界面开裂与CA砂浆脱空耦合伤损,建立伤损状态下的CRTS Ⅱ型板式无砟轨道-简支梁桥结构有限元模型,分析宽窄接缝与CA砂浆不同伤损型式和不同位置耦合伤损尺寸在正温度梯度荷载作用下对无砟轨道-简支梁桥结构受力及变形的影响。研究结果表明:宽窄接缝与CA砂浆耦合伤损较宽窄接缝界面开裂或CA砂浆脱空单一伤损型式对结构受力与变形更为不利;当耦合伤损面积超过0.975 m×0.765 m,长度超过0.975 m或宽度超过0.51m时,轨道板拉应力超过其抗拉强度,影响结构的正常使用;随耦合伤损尺寸的增加,轨道板和CA砂浆的垂向位移均显著增大,底座板和桥梁的垂向位移呈微弱减小趋势;宽窄接缝与CA砂浆耦合伤损位于轨道板板边对结构受力和变形影响最大,耦合伤损位于板端次之,耦合伤损位于板角影响最小。  相似文献   

9.
研究目的:温度荷载下梁轨耦合作用规律是桥上铺设CRTSⅡ型板式无砟轨道的基础,本文针对简支梁和连续梁,建立多钢轨、整桥系统的计算模型,对其梁轨耦合作用规律及其影响因素进行较为全面、细致的分析,以期为桥上纵连板式无砟轨道无缝线路的设计、施工及后期养护维修提供参考。研究结论:(1)纵连板的钢轨伸缩力与梁跨布置没有明显的映射关系,近似呈对称分布,这主要是由轨道板的位移分布特点所决定的;(2)底座板是梁轨系统中的关键部件,其伸缩影响着系统其他部件的受力与变形,端刺为底座板的锚固装置,其刚度直接决定着底座板的伸缩位移大小;(3)受梁板相对位移的影响,滑动层、"两布"隔离层、端刺产生的纵向力均会引起底座板纵向力的变化,变化幅度近似为其摩阻力或纵向力;(4)降温工况下,钢轨、轨道板、底座板三层纵连结构受桥梁伸缩的影响不大,但在剪力齿槽处波动较大;(5)滑动层摩擦系数是轨道结构中极其重要而又难以监控的参数;增大CA砂浆粘结力对轨道结构受力有利,建议严控施工质量;(6)该研究结论对纵连板式无砟轨道设计优化理论和工程实践具有一定的指导意义。  相似文献   

10.
桥上纵连板式无砟轨道无缝线路力学性能分析   总被引:1,自引:0,他引:1  
基于有限元法,考虑钢轨、无砟道床、滑动层、桥梁等结构的相互作用关系,建立桥上纵连板式无砟轨道无缝线路纵-横-垂向空间耦合模型,进行滑动层摩擦系数、扣件纵向阻力、无砟道床伸缩刚度等对桥上纵连板式无砟轨道无缝线路的受力和变形影响规律的研究.结果表明:滑动层减弱了桥梁、轨道间的相互作用,当滑动层摩擦系数为0.1~0.5时,无缝线路伸缩力仅为22.821~55.361 kN,远小于一般桥上无缝线路结构;滑动层摩擦系数越小越有利于轨道和桥梁结构的安全使用;底座板/轨道板的伸缩刚度减小会明显增大部分轨道和桥梁的受力,伸缩刚度折减至10%时,伸缩力会增大近6倍,因此应该注意控制底座板和轨道板的开裂现象;扣件的纵向阻力变化对轨道和桥梁结构的受力和变形几乎没有影响,但为了防止钢轨爬行或断缝值超限,扣件阻力不宜太小.  相似文献   

11.
研究目的:为对比桥上铺设不同无砟轨道时对应无缝线路受力规律,本文基于有限元方法及梁轨相互作用原理,分别建立大跨度桥上纵连板式、单元板式及双块式无砟轨道有限元模型,分析实测温度工况及制挠力耦合作用下,不同无砟轨道对应的无缝线路受力规律及桥梁理论最大温度跨度,并比较制动墩墩顶刚度、扣件阻力等参数对无缝线路受力及最大温度跨度的影响。研究结论:(1)相同桥梁温度跨度下,双块式无砟轨道钢轨附加应力最大,纵连板式无砟轨道钢轨附加应力最小,且纵连板式无砟轨道钢轨附加应力远小于铺设单元板式或双块式无砟轨道时对应钢轨附加应力;(2)采用常阻力扣件时,当制动墩墩顶刚度由1 500 k N/cm增大到8 000 k N/cm时,单元板式无砟轨道最大温度跨度由93.3 m增大到105 m,双块式无砟轨道最大温度跨度由60 m增大到75.8 m,而纵连板式无砟轨道钢轨附加应力受墩顶刚度的影响很小;(3)纵连板式无砟轨道对应桥梁最大温度跨度需同时考虑钢轨附加应力及墩顶纵向位移限值;(4)扣件阻力大小对单元板式及双块式无砟轨道钢轨附加应力影响较大,采用小阻力扣件后,两者对应最大温度跨度分别增大约1.5、2.0倍,小阻力扣件可以有效的减小单元板式及双块式无砟轨道钢轨附加应力;(5)本研究成果可为不同无砟轨道应用及对应桥梁跨度设计提供参考。  相似文献   

12.
基于位于小半径曲线区段的桥上CRTSⅡ型板式无砟轨道的运营期温度与变形监测数据,分析了CRTSⅡ型板式无砟轨道的稳定性并提出了养修建议。结果表明:连续4~5 d高温天气后轨道板温度达到最高值,因此持续高温超过3 d就须加强现场检查,以消除安全隐患;CRTSⅡ型板式无砟轨道结构整体性好,钢轨与轨道板纵向相对位移很小,在轨道结构良好的情况下可适当减少防爬位移观测点数量,但对特殊结构处及结合部仍应长期观测;在设计温度梯度范围内,轨道板垂向稳定性满足要求。  相似文献   

13.
针对我国高速铁路桥上CRTSⅡ型板式无砟轨道梁-板-轨相互作用问题,采用有限元法分别建立双线多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路精细化空间耦合模型,考虑桥梁及轨道结构的细部尺寸与力学属性,计算列车荷载作用下各轨道及桥梁结构的挠曲力与位移,分析扣件纵向阻力、滑动层摩擦因数等参数对桥上无缝线路挠曲受力与变形的影响规律。研究结果表明:列车荷载作用下大跨连续梁桥上轨道结构的受力与变形要明显大于多跨简支梁桥,单线加载时有载侧和无载侧之间相差不大,且近为双线加载时的1/2;需要根据不同的检算部件选取最不利的列车荷载作用长度;采用小阻力扣件改善钢轨受力与变形时,固定支座桥台和连续梁活动支座桥墩处的轨板相对位移应加强观测;滑动层摩擦因数、固结机构纵向刚度及固定支座墩/台顶纵向刚度均需控制在合理范围内。  相似文献   

14.
为研究地震对桥梁纵连板式无砟轨道相互作用的影响,以沪昆高铁某16~32 m简支箱梁桥-CRTSⅡ型板式无砟轨道系统为研究对象,建立充分考虑轨道结构层间非线性约束的三维动力仿真模型,探讨ElCentro波和Taft波2种常见地震激励对结构受力变形的影响,对比3种不同烈度的ElCentro波对系统动力特性的影响程度。研究结果表明:地震波的频谱特性与结构动力响应紧密联系,ElCentro波对结构纵向受力与变形影响较大;地震作用下,钢轨、桥墩和端刺承受着较大纵向力;扣件、滑动层和砂浆层各向位移均在梁缝处出现峰值,扣件和砂浆层纵向位移最大值出现在端刺附近;滑动层通过底座板滑移耗能,大幅度提高了系统的抗震性能;随着地震烈度的增加,各关键构件受力变形大幅增长。  相似文献   

15.
为研究极端温度作用下高速铁路简支梁桥与CRTSⅡ型纵连板式无砟轨道相互作用,以5~32 m简支梁为例,建立考虑钢轨、扣件、轨道板、砂浆层、底座板、滑动层、摩擦板、端刺,以及梁体、墩台等构件的桥上CRTSⅡ型无砟轨道系统精细化仿真模型,研究高温和严寒等极端温度条件下系统的受力与变形特征,探讨不同轨道伸缩刚度、滑动层摩擦因数和砂浆黏结力对系统受力与变形的影响.研究结果表明:在高温条件下,轨道板代替钢轨承受了更多伸缩力,轨道板轴向力最大值出现在主端刺处,易导致上拱破坏;正温度梯度作用下,轨道板上、下表面最大纵向应力差达10.1MPa,将引起翘曲变形导致端部砂浆层脱黏;在极寒条件下,轨道板最大纵向拉力出现在右端刺处,最大值达3.9 MPa,轨道板易发生断裂;底座板初始裂缝对轨道板及底座板的受力分布与变形产生不利影响;滑动层可有效减小梁轨之间的相互作用,适当增大砂浆黏结力有利于减小轨道板-底座板离缝和砂浆脱黏等病害的发生几率.  相似文献   

16.
结合京沪高铁CRTSⅡ型板式无砟轨道区域沉降问题,提出适用于大范围轨道板高度提升的抬板法维修方案。首先阐述抬板法施工原理,其次对竖向锚固、轨道板解锁、轨道板抬升、植筋锚固、板底注浆、接缝浇注、轨道板连接、轨道精调等施工方案进行说明,最后介绍抬板法的施工组织。  相似文献   

17.
采用1∶1足尺模型对列车竖向静荷载作用下CRTSⅡ型板式无砟轨道结构受力特性进行试验,并对CRTSⅡ型板式无砟轨道梁板和梁体理论分析模型进行验证。按实际工艺在实验室内建造一段CRTSⅡ型板式无砟轨道,通过试验机和分配梁模拟同一转向架2个轮对的竖向荷载,利用应变片、应变计、压力盒和位移计等测试元件,对钢轨、轨道板、水泥乳化沥青砂浆和底座的受力与变形进行测试。根据无砟轨道梁板和梁体理论,建立CRTSⅡ型板式无砟轨道结构有限元分析模型,对轨道结构在相同荷载工况下的受力与变形进行理论分析。将试验结果与计算结果进行对比,验证CRTSⅡ型板式无砟轨道梁板和梁体理论模型的正确性和适应性。  相似文献   

18.
通过对某高铁客运专线特大桥桥梁在曲线位置的CRTSⅡ型板式无砟轨道轨道板换板实践进行总结,形成了一套成熟的施工技术。该技术避免了对无缝钢轨长线切割、钢轨长线扣件松脱、钢轨翻离道床等工序,节约了大量的施工时间,同时减少了经济损失,可以在今后的铁路工程CRTSⅡ型板式无砟轨道轨道板换板施工中推广应用。  相似文献   

19.
温度力作用下单元板式无砟轨道钢轨横向变形研究   总被引:1,自引:1,他引:0  
为了研究无砟轨道钢轨横向稳定性,以曲线上单元板式无砟轨道无缝线路为对象,建立包括钢轨、扣件、轨道板和限位部件的无砟轨道钢轨横向变形计算模型,结合不同轨道板长度分析钢轨在温度力作用下的横向变形特性,讨论不同、限位部件弹性和初始弯曲半波长对钢轨横向变形幅值和扣件横向抗力的影响。计算表明,巨大温度力可导致钢轨沿线路纵向产生以轨道板为波长的周期横向不平顺,在小半径曲线地段,应采用刚度较大且塑性变形小的弹性限位垫层材料,重视半波长过小的初始弯曲的治理,并加强对钢轨横向位移和板端扣件使用状态的监测。  相似文献   

20.
根据 CRTSⅢ型板式无砟轨道结构特性,运用大型有限元软件 ANSYS 建立有限元梁板模型,并在成灌线上的 CRTSⅢ型板式无砟轨道冒浆区段进行了现场试验.在轨枕、轨道板质量和扣件、支承层刚度不变情况下,研究自密实混凝土冒浆状态下各轨道部件的垂向位移及垂向加速度,为 CRTSⅢ型板式无砟轨道结构设计提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号