首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究目的:温度荷载下梁轨耦合作用规律是桥上铺设CRTSⅡ型板式无砟轨道的基础,本文针对简支梁和连续梁,建立多钢轨、整桥系统的计算模型,对其梁轨耦合作用规律及其影响因素进行较为全面、细致的分析,以期为桥上纵连板式无砟轨道无缝线路的设计、施工及后期养护维修提供参考。研究结论:(1)纵连板的钢轨伸缩力与梁跨布置没有明显的映射关系,近似呈对称分布,这主要是由轨道板的位移分布特点所决定的;(2)底座板是梁轨系统中的关键部件,其伸缩影响着系统其他部件的受力与变形,端刺为底座板的锚固装置,其刚度直接决定着底座板的伸缩位移大小;(3)受梁板相对位移的影响,滑动层、"两布"隔离层、端刺产生的纵向力均会引起底座板纵向力的变化,变化幅度近似为其摩阻力或纵向力;(4)降温工况下,钢轨、轨道板、底座板三层纵连结构受桥梁伸缩的影响不大,但在剪力齿槽处波动较大;(5)滑动层摩擦系数是轨道结构中极其重要而又难以监控的参数;增大CA砂浆粘结力对轨道结构受力有利,建议严控施工质量;(6)该研究结论对纵连板式无砟轨道设计优化理论和工程实践具有一定的指导意义。  相似文献   

2.
本文以一段大跨连续梁桥为研究对象,建立桥上CRTSⅡ型板空间一体化模型,采用有限元方法,计算桥上CRTSⅡ型板式无砟轨道在温度作用下各部件的纵向力,并分析不同因素对各部件纵向力的影响.通过计算分析表明:对于本文中的连续梁桥,随着联合板伸缩刚度的增大,联合板、固结机构、端刺、桥梁最大纵向力明显增大,钢轨最大纵向力减小;随着滑动层摩擦系数的增大,除了端刺纵向力基本不变,其它各部件最大纵向力都增大;当摩擦板长度达到约50 m时,能有效减小端刺受力,此后即使再增加摩擦板长度,对端刺受力的影响已不很显著.  相似文献   

3.
桥上纵连板式无砟轨道无缝线路力学性能分析   总被引:1,自引:0,他引:1  
基于有限元法,考虑钢轨、无砟道床、滑动层、桥梁等结构的相互作用关系,建立桥上纵连板式无砟轨道无缝线路纵-横-垂向空间耦合模型,进行滑动层摩擦系数、扣件纵向阻力、无砟道床伸缩刚度等对桥上纵连板式无砟轨道无缝线路的受力和变形影响规律的研究.结果表明:滑动层减弱了桥梁、轨道间的相互作用,当滑动层摩擦系数为0.1~0.5时,无缝线路伸缩力仅为22.821~55.361 kN,远小于一般桥上无缝线路结构;滑动层摩擦系数越小越有利于轨道和桥梁结构的安全使用;底座板/轨道板的伸缩刚度减小会明显增大部分轨道和桥梁的受力,伸缩刚度折减至10%时,伸缩力会增大近6倍,因此应该注意控制底座板和轨道板的开裂现象;扣件的纵向阻力变化对轨道和桥梁结构的受力和变形几乎没有影响,但为了防止钢轨爬行或断缝值超限,扣件阻力不宜太小.  相似文献   

4.
为研究高速铁路桥上CRTSⅡ型板式无砟轨道伸缩附加作用,建立了线-板-桥-墩一体化非线性有限元空间力学模型,以某多跨连续梁桥为基本工点,计算了桥梁和轨道伸缩附加受力和变形规律,并分析了纵连底座板与桥梁间滑动层摩擦系数,以及底座板刚度折减变化对连续梁桥上CRTSⅡ型板式无砟轨道受力和变形的影响.  相似文献   

5.
正CRTSⅡ型板式无砟轨道结构由钢轨、弹性扣件、预制轨道板、CA砂浆调平层、连续底座板、滑动层、侧向挡块等部分组成,桥梁固定支座上方设置剪力齿槽固结机构,梁缝设置高强度挤塑板,台后路基上设置摩擦板、端刺及过渡板。底座板为轨道板的底座,是承接桥面系与道  相似文献   

6.
为研究地震对桥梁纵连板式无砟轨道相互作用的影响,以沪昆高铁某16~32 m简支箱梁桥-CRTSⅡ型板式无砟轨道系统为研究对象,建立充分考虑轨道结构层间非线性约束的三维动力仿真模型,探讨ElCentro波和Taft波2种常见地震激励对结构受力变形的影响,对比3种不同烈度的ElCentro波对系统动力特性的影响程度。研究结果表明:地震波的频谱特性与结构动力响应紧密联系,ElCentro波对结构纵向受力与变形影响较大;地震作用下,钢轨、桥墩和端刺承受着较大纵向力;扣件、滑动层和砂浆层各向位移均在梁缝处出现峰值,扣件和砂浆层纵向位移最大值出现在端刺附近;滑动层通过底座板滑移耗能,大幅度提高了系统的抗震性能;随着地震烈度的增加,各关键构件受力变形大幅增长。  相似文献   

7.
CRTSⅡ型无砟轨道板板端新旧混凝土交界面薄弱,在低温情况下轨道板收缩,轨道板板端新旧混凝土交界面处出现板端宽裂缝,并伴随轨道板下界面与 CA 砂浆层粘结失效出现脱粘裂缝.在出现裂缝的情况下,分析温度升高对上部钢轨的应力以及下部桥墩的纵向力的影响.考虑轨道板板端裂缝宽度、CA砂浆粘结失效裂缝长度和脱粘CA砂浆块与轨道板下界面之间的摩擦系数三项因素对上部钢轨的应力以及下部桥墩的纵向力的影响,从钢轨附加温度应力以及桥墩纵向力的角度对板端宽裂缝的灌浆填缝修补措施进行了评价.  相似文献   

8.
桥上无砟轨道受力比较复杂,桥上无砟轨道无缝线路的稳定性直接影响高速列车的行车平稳与安全。基于有限元法和梁轨相互作用理论,建立了6×32 m混凝土简支梁桥上CRTSⅠ型板式无砟轨道无缝线路空间耦合模型,研究温度荷载作用下钢轨、轨道板及底座板的受力变形特性,并对相关影响参数进行分析。结果表明:在温度荷载作用下,钢轨伸缩力的峰值出现在桥梁墩台及跨中,钢轨的纵向位移呈现先增后减的趋势,在中间两跨达到最大值,钢轨和轨道板的纵向伸缩趋势基本一致,表明扣件起到了很好的约束作用;桥上采用小阻力扣件可改善桥上无缝线路梁轨相互作用,但要充分考虑轨板相对位移不能过大,保证钢轨在桥台处的爬行能够得到有效控制;从减小桥上轨道结构伸缩力及纵向位移考虑,桥梁墩台固定端纵向刚度不宜过大。  相似文献   

9.
为研究制动力作用下高速铁路简支梁桥与CRTS Ⅱ型板式无砟轨道的相互作用问题,以沪昆高铁上某12×32 m双线简支箱梁为工程背景,建立考虑钢轨-轨道板-底座板-梁体-墩台的一体化有限元模型,系统分析单线制动和双线同向制动工况下轨道和桥梁结构的受力及变形规律。研究结果表明:钢轨制动力及位移对加载位置极为敏感,检算时应考虑多种荷载位置的影响;单线制动作用下钢轨与轨道板相对位移、CA砂浆剪切位移、桥梁和底座板相对位移均处于弹性范围内;当车辆在桥上靠近桥台处制动时,摩擦板可有效地减少传递至路基段的纵向力;双线同向制动作用下各项效应与单线制动有载侧趋势相同,桥梁和底座板将发生相对滑动。  相似文献   

10.
为探明高速铁路长联大跨度连续梁桥上CRTSII型板式无砟轨道制挠工况下受力特性,选取某高铁跨径(60+3×100+60)m的连续梁桥为工程实例,建立考虑梁轨各构件的空间有限元模型,计算分析单侧制挠工况下各层轨道结构纵向附加力分布规律;分析轨道关键结构参数变化对其纵向附加力影响规律,研究结果表明:在单侧制挠工况下,钢轨纵向附加力最大值出现位置随着加载区域的变化而变化,最大附加拉力及附加压力分别出现在加载区域后端点、前端点;轨道板和底座板纵向附加力分布趋势一致;3层轨道结构中,轨道板在制挠工况下纵向附加力最大;连续梁固定支座右侧300 m范围加载制动力为轨道结构相对最不利工况;道床板伸缩刚度以及滑动层摩擦因数对轨道结构附加力影响较大;CA砂浆层对轨道结构附加力影响较小;建议增大大跨连续梁两端无砟轨道结构强度,改进CRTSII无砟轨道CA砂浆层的设置。  相似文献   

11.
利用有限元软件ANSYS建立温度荷载作用下桥上CRTS II型板式无砟轨道结构体系各部件纵向相互作用分析模型。模型中钢轨、轨道板、底座板、梁体、桥墩均采用梁单元模拟,各结构层之间的连接采用弹簧单元模拟。以一座高速铁路混凝土连续梁桥为例,分析桥梁温度荷载作用下,轨道及桥梁结构的力学特性,并针对相关因素对各结构层受力与变形的影响进行了研究。研究结果表明:当梁体温升幅度达到一定值以后,轨道结构纵向力不再明显增大;"分离板模型"能更好反映CA砂浆黏结状态对轨道和桥梁受力特性的影响;滑动层摩擦大数增大,将大幅度增加轨道与桥梁结构的受力;轨道板宽接缝开裂导致钢轨、底座板纵向受力以及轨道板位移的增大。  相似文献   

12.
1 施工质量控制重点 合蚌高铁主要采用CRTS Ⅱ型板式无砟轨道,结构由钢轨、弹性扣件、预制轨道板、乳化沥青砂浆调整层、连续底座、滑动层、侧向挡块等部分组成,路基上的轨道结构主要包括钢轨、弹性扣件、预制轨道板、砂浆调整层、混凝土支承层、侧向挡块等部分.CRTSⅡ型板式无砟轨道施工的主要工艺流程为:梁面打磨→两布—膜铺设→底座板施工→轨道板粗铺、精调→乳化沥青砂浆灌注→钢轨铺设与精调→侧向挡块施工.  相似文献   

13.
张捍东 《铁道建筑》2020,(3):104-107,117
以昌赣客运专线(35+40+60+300+60+40+35)m混合梁斜拉桥为例,建立了大跨度斜拉桥上无砟轨道精细化模型计算分析不同荷载作用下大跨度桥上无砟轨道纵向力。计算结果表明:在温度荷载作用下,钢轨纵向应力相对较大,最大拉应力为130.03 MPa,跨中轨道板纵向应力较小。在竖向荷载作用下,钢轨、轨道板和底座板的拉应力最大值出现在桥塔附近,压应力最大值出现在跨中附近,其中钢轨压应力最大值为15.02 MPa,底座板拉应力最大值为3.05 MPa。在列车制动作用下,钢轨、轨道板和底座板的拉应力最大值出现在跨中附近,压应力最大值出现在桥塔附近,轨道板和底座板纵向应力均较小。  相似文献   

14.
CRTSⅠ型板式无砟轨道CA砂浆疲劳寿命分析   总被引:6,自引:5,他引:1  
根据CRTSⅠ型板式无砟轨道的结构特征与受力特征,将钢轨假设为点支撑梁,扣件和基础的弹性假设为弹簧,轨道板、CA砂浆和底座板分别假设为实体,建立CRTSⅠ型板式无砟轨道的有限元模型,以Palmgren-Miner线性疲劳累计损伤准则为基础,采用全寿命分析方法对CA砂浆在不同列车荷载作用下的疲劳寿命进行分析,得到CA砂浆层的疲劳寿命分布和危险点的寿命值。  相似文献   

15.
根据桥上CRTSⅡ型板式无砟轨道结构特性,利用有限元分析方法,采用梁单元模拟钢轨,实体单元模拟轨道板、底座板和桥梁,弹簧单元分别模拟砂浆填充层和滑动层,建立CRTSⅡ型板式无砟轨道纵向力计算模型。基于现场测量的底座板厚度资料和桥梁资料,计算出模型中各单元参数值。利用当地气温资料和轨道机车类型,得到最大温升和列车制动力值,计算出温度荷载和列车制动荷载作用下底座板厚度不足处纵向力值。分析温度荷载和列车制动荷载对底座板厚度不足处屈曲的影响。  相似文献   

16.
采用1∶1足尺模型对列车竖向静荷载作用下CRTSⅡ型板式无砟轨道结构受力特性进行试验,并对CRTSⅡ型板式无砟轨道梁板和梁体理论分析模型进行验证。按实际工艺在实验室内建造一段CRTSⅡ型板式无砟轨道,通过试验机和分配梁模拟同一转向架2个轮对的竖向荷载,利用应变片、应变计、压力盒和位移计等测试元件,对钢轨、轨道板、水泥乳化沥青砂浆和底座的受力与变形进行测试。根据无砟轨道梁板和梁体理论,建立CRTSⅡ型板式无砟轨道结构有限元分析模型,对轨道结构在相同荷载工况下的受力与变形进行理论分析。将试验结果与计算结果进行对比,验证CRTSⅡ型板式无砟轨道梁板和梁体理论模型的正确性和适应性。  相似文献   

17.
通过空间有限梁单元理论,建立桥上CRTS Ⅱ型无砟轨道无缝道岔的岔一板一桥一墩一体化模型,分析滑动层摩擦系数对钢轨、道岔、轨道板、底座板、固结机构与墩台等结构部件温度附加力的影响,结果表明:钢轨应力和相对位移随着滑动层摩擦系数的增加而略有增大;摩擦系数较大时,轨道板、底座板总体纵向力有较大幅度提高,对轨道板、底座板受力不利;墩台顶的纵向水平力变化不大,简支梁墩台固定支座附近的固结机构所传递的纵向力显著增加,但是连续梁上固结机构受力变化规律不明显;道岔传力部件所受纵向力均有较大或较小的降低,直尖轨尖端相对曲基本轨、长心轨尖端相对翼轨的位移也都依次减小,滑动层摩擦系数的增加对道岔转换设备和结构传力部件受力是有利的.  相似文献   

18.
轨道板与水泥乳化沥青砂浆离缝是CRTSⅡ型板式无砟轨道的主要伤损形式之一,水泥乳化沥青砂浆具有支承、缓冲、传载等作用,离缝将影响无砟轨道的变形与受力。基于弹性地基梁体理论和有限元方法,建立了路基上CRTSⅡ型板式无砟轨道有限元模型,分析在温度荷载和自重作用下不同离缝长度以及产生离缝后CA砂浆层参数对轨道结构的影响。结果表明:轨道板的翘曲位移及纵向应力均随着离缝长度增大而增加;当离缝长度超过1.95 m时,轨道板的翘曲变形及纵向应力都急剧增大,建议轨道板与CA砂浆层离缝长度不宜超过1.95 m。  相似文献   

19.
在车辆荷载和温度作用下,CRTSⅢ型板式无砟轨道由于自密实混凝土层与底座板间产生离缝,发生应力集中和局部变形,对无砟轨道服役状态和使用寿命造成明显影响。基于ABAQUS有限元模型,计算车辆与温度不同荷载组合下,层间离缝横向和纵向发展对无砟轨道结构受力变形的影响,探究伤损演变规律和维修限值。研究结果表明:层间离缝宽度小于1.5m,轨道结构受力和变形的影响很小;离缝发展至两侧钢轨正下方后,轨道结构变形和应力均增大明显;离缝长度大于1.2m,对轨道板出现受拉裂缝和无离缝端上翘;正温度梯度荷载对轨道板弯折变形和自密实混凝土层纵横拉应力以及负温度梯度荷载对轨道板上翘和纵横拉应力均有叠加放大效应。  相似文献   

20.
我国高速铁路无砟轨道无缝线路发展迅速,但随着列车的运营,轨道板与CA砂浆层之间常会出现离缝,这将对无砟轨道的长期服役性能产生一定的影响。以高速铁路多跨简支梁上CRTS Ⅰ型板为例进行分析,研究板边、板端、板角、板中4种典型CA砂浆离缝病害对轨道几何形位及对无缝线路受力变形情况的影响。研究结果表明:离缝病害作用下,随着桥轨间温差变大,轨道水平偏差增幅较大,轨道高低偏差最值偏大,并且板端病害对离缝区平顺性影响大。在温度荷载作用下含病害的轨道结构伸缩受力更加明显,尤其体现轨道板、底座板上,其中板边位置的病害受力变形最为明显。在列车荷载作用下在离缝病害区域轨道结构挠曲受力情况变化较大,其中板角及板端病害影响大。根据计算结果建议在无缝线路养护维修时着重检查轨道板及底座板下表面的情况,及要注意检修钢轨正下方病害情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号