首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
自锚式悬索桥主缆基准索股架设时,由于现场施工状态并不是设计标准状态,所以有必要对标准状态下的基准索股线形进行修正以满足具体施工条件的要求。近似以抛物线模拟基准索股线形,推导出主缆温度、主缆两端点水平跨度和高差变化时索股线形变化的计算公式。并以江西省上饶市上饶大桥为例,建立有限元模型,验证理论推导公式的有效性。  相似文献   

2.
介绍了基于分段悬链线法和抛物线法的自锚式悬索桥主缆成桥线形及空缆线形计算的原理和方法。成桥线形计算内容主要包括主缆理论成桥线形计算、主缆无应力索长计算、主缆与主索鞍切点计算及主索鞍位置计算。空缆线形计算内容主要包括索鞍偏移量计算、空缆理论线形计算及索夹安装位置计算。同时结合工程实例对比分析了抛物线法和分段悬链线法求解主缆成桥线形和空缆线形的误差影响。  相似文献   

3.
杨益 《公路交通科技》2010,(11):392-395
在悬索桥施工过程中,基准索股是否能精确定位是关系到整个悬索桥成桥主缆线形是否达到设计线形,因此本文考虑采用悬链线理论对大跨度悬索桥基准索股理论计算垂度在温度、塔偏、主塔预抬量影响下进行修正,推导出各影响因素下的修正系数,根据影响因素变化量进行修正得到基准索股实际架设垂度,并根据基准索股实际垂度与实际架设垂度差值进行放索量的计算,通过调整索长来进行基准索股线形的调整。算例分析表明:本文根据悬链线理论进行的基准索股架设时影响因素下的修正系数的推导是正确可行的。  相似文献   

4.
香丽高速虎跳峡金沙江大桥为主跨766 m的独塔单跨地锚式悬索桥,该桥仅设1个桥塔,中跨加劲梁跨度小于主缆跨度.为保证上部结构施工安全,提高主缆和加劲梁线形控制精度,在主缆架设过程中,基准索股架设时,通过测点切线角度、温度和跨度的变化换算实际跨中测点标高;一般索股架设时,每层设置相对基准索股,通过温差计算该层其余索股的标...  相似文献   

5.
文章详细分析了利用抛物线理论推导相关公式进行基准索股架设控制的缺陷,针对已有方法的不足或缺陷,提出了基于悬链线理论的悬索桥基准索股架设线形控制精确计算方法及程序流程,通过算例证明了本文方法的优越性,并在算例中给出了输入输出数据文件的格式。  相似文献   

6.
徐君伟  张自荣 《公路》2012,(6):27-32
基于悬链线理论提出一种新的基准索股调整量的计算方法,分步累加法;以不同类型的悬索桥基准索股调整为例,应用分步累加法、简化悬链线法及抛物线法分别进行调索计算,通过相互比较,验证了分步累加法的正确性和有效性;确定了分步累加法步长的合理值。  相似文献   

7.
线形控制是悬索桥建造过程中关键过程,基准索股架设精度的可靠与否直接决定空缆线形及成桥线形能否达到设计要求。通过对索股弹性模量、延米自重、施工单位对调索量控制精度、温度传感器测量精度、桥塔纵向偏位测量精度、基准索股标高测量精度等影响基准索股架设线形的因素进行了分析,结合规范要求与功能函数的思想,提出基于可靠度理论的悬索桥的基准索股架设精度可靠性分析方法,编制了改进后的蒙特卡洛法计算程序。利用该方法对主跨1200m的虎门二桥之大沙水道悬索桥中跨基准索股架设精度的可靠性进行了分析。研究结果表明:当该桥中跨调索精度为±25mm时,可靠度值为2. 03,满足规范要求。  相似文献   

8.
悬索桥基准丝股线形的确定与测控   总被引:4,自引:1,他引:4  
介绍了润扬长江公路大桥悬索桥基准丝股线形在温度和跨度变化时的修正计算方法,提出采用影响系数的办法来修正温度和跨度变化的影响。以方便施工和监理的应用;探讨了悬索桥基准丝股线形的控制测量方法。  相似文献   

9.
《公路》2017,(11)
以重庆江津至贵州习水高速公路笋溪河特大桥为研究对象,从施工监控的角度,对悬索桥线形控制中影响成桥线形、无应力索长、索鞍预偏量以及空缆线形的参数进行分析研究,选取了计算方法、主缆弹性模量、主缆自重、加劲梁自重、环境温度作为重点研究参数,采用解析法与Midas/Civil相结合的研究方法。通过计算得出结论,计算方法对线形计算有较大影响,对于特大跨悬索桥应采用高精度的分段悬链线法和节线法;主缆弹性模量、加劲梁重量、环境温度对主缆成桥标高、空缆标高、无应力索长、索鞍预偏量等几项线形指标的影响最大,敏感度最高,是施工监控中需要重点关注的参数指标;为提高主缆线形和成桥线形的监控精度,在架设之前,对材料参数和荷载参数进行准确统计和测定;架设过程中,需重点监控环境参数的变化。  相似文献   

10.
白晓宏  李俊霖 《公路》2021,66(12):177-181
猫道作为悬索桥上部结构重要的施工平台,其线形直接影响到索股牵引、挤紧、缠丝等作业工序,因此猫道设计的重点是线形分析,它是猫道静力分析和稳定性分析的前提和基础,是猫道结构设计的关键.针对大跨度柔性索结构特性,即大变形和几何非线性,对新田长江大桥猫道线形进行了计算分析,有别于传统索单元,采用分段悬链线法进行线形分析,从索单元的基本受力特点出发,推导出分段悬链线的计算方法,采用增量迭代法,以力学平衡条件和变形相容条件确定各分段悬链线的索力和曲线形状,整体计算采用西南交通大学开发的BNLAS桥梁非线性分析系统进行线形分析,解决了大跨柔性索单元几何非线性问题,线形分析具有很高的效率和精度.  相似文献   

11.
为在悬索桥结构分析中能精确方便地计算锚跨索股下料长度以及空缆状态下各索股张力,从竖弯切点出发,考虑悬链线与多段圆之间的几何协调关系,选择合理的索力分配模式,求解成桥状态下各索股空间走形和下料长度;以不动点到锚点间的无应力长度保持不变为条件,根据假定的竖弯角和计算可得的平弯角以及竖弯切点处的几何协调条件,采用解析法求解空缆状态下各索股张力。结果表明,本方法能快速、准确地计算锚跨各索股下料长度和空缆状态下各索股张力,提高施工锚跨索股施工监控的精度。  相似文献   

12.
以桃花峪黄河大桥主桥为工程背景,介绍了利用大型商用软件Midas/Civil确定双塔三跨平面主缆自锚式悬索桥成桥状态的具体方法和流程,给出了主缆各索股无应力下料长度、主索鞍及散索套预偏量、基准索股架设线形及跨度、塔高、索温及索长变化对基准索股架设线形影响的参数分析方法.  相似文献   

13.
刘家峡大桥为主跨536m的单跨双铰钢桁加劲梁式悬索桥,桥址昼夜温差达到14℃。针对大温差下该桥基准索股的调整,推导出任一温度下主缆线形的温度修正方程,并利用现场实测值分析了温度变化对基准索股垂度的影响,即当温度从15℃起每降低1℃,西、东边跨及中跨索股垂度分别减小7.38,5.2,15.5mm,2个边跨随温度降低表现出明显的非线性特征。根据温度变化对索股垂度的影响规律进行了理论分析与实测验证,制定了通过调整索长达到垂度调整的办法,即在选定的调索时间(气温-13℃左右),相对于设计基准温度15℃,桥梁西、东边跨基准索股各上调206.5mm、145.6mm,中跨跨中索股上调438.6mm,从而保证了该桥成桥状态的线形。  相似文献   

14.
采用数值解析法对悬索桥基准索股架设时因温度、跨径、索塔高度及索长变化引起的主跨中标点高程改变进行了研究,得到了各种影响因素在发生单位变化量时产生主揽跨中标志点标高的的影响值,提出了受各因素影响下基准索股施工架设的修正方法。实践证明:数值解析法对于现场确定和控制基准索股的高程非常有效。  相似文献   

15.
主缆的架设精度(或架设质量)在很大程度上取决于基准索股的架设精度,而基准索股的架设精度主要取决于架设条件下(一般为非基准状态)基准索股架设垂度修正量的确定和达到修正垂度的控制方法。介绍基于抛物线理论和基于悬链线理论的平胜大桥基准索股非基准状态下架设垂度修正量的确定方法及达到该垂度的施工控制方法。  相似文献   

16.
冯传宝 《桥梁建设》2020,50(1):99-104
五峰山长江大桥主桥为主跨1092 m的钢桁梁公铁两用悬索桥,加劲梁采用板桁结合钢桁梁,主缆采用预制平行高强钢丝索股结构,直径1.3 m。边跨加劲梁采用支架顶推法施工,中跨加劲梁采用缆载吊机由跨中向两侧对称架设,并在中跨侧靠近桥塔位置处合龙;主缆采用平行钢丝索股法架设。主缆制造时,采用无应力长度法计算各索股的无应力下料长度,并在主缆锚固区每处预留长度为±26 cm的垫板空间;主缆架设时,采用4根索股作为基准索股进行架设线形控制,并将主缆长度误差控制在-18~30 cm,均在误差控制范围内;加劲梁施工时,通过分析各因素对加劲梁线形的影响规律,提出控制二期恒载的措施;加劲梁合龙时,采取中跨钢梁不动、起顶边跨钢梁的合龙控制措施;在加劲梁合龙后加载二期恒载。加劲梁合龙后标高误差为-5^+63 mm,线形控制较好。  相似文献   

17.
大跨度悬索桥主缆成桥线形是进行结构分析、计算和指导施工的关键控制因素,采用有限位移理论可较全面地考虑大位移引起的悬索桥几何非线性.利用通用有限元程序,建立全桥平面有限元模型,实现了悬索桥施工过程的模拟计算,并且使用悬索桥施工理想初态及成桥状态的迭代算法来确定主缆成桥线形.结果表明,悬索桥主缆的线形是介于抛物线与悬链线之间的索多边形.  相似文献   

18.
马普托大桥吊索在国内加工,通过海运到施工现场,周期较长。国内悬索桥吊索索长在主缆架设完成后,通过线形监控数据分析给出下料长度。考虑施工工期制约,通过提高主缆架设精度、索夹安装精度及优化钢箱梁安装工艺,按照理论线形对吊索长度进行下料。其中在主缆架设之前根据箱梁和索夹实际称重、桥面铺装重度试验结果、缆索系统钢丝实测弹模数据,精确计算主缆线形和吊索下料长度。为控制后续施工精度,在基准索股架设期间,分析了塔偏与温度对线形的影响,并根据现场实测温度与塔偏对线形实时调整。主缆架设完成后通过锚跨张力对主缆线形进一步微调,保证实际线形与理论线形相吻合。吊梁之前,根据实测空缆线形精确计算并放样索夹;吊梁过程中,及时进行索鞍顶推,防止索股滑动或桥塔开裂。钢箱梁合龙完成后桥面测量线形与理论线形基本吻合。  相似文献   

19.
为较精确地分析悬索桥成桥线形下索夹对主缆弯曲次内力的影响,基于成桥状态下的分段悬链线理论,考虑索夹的套箍作用修正成桥线形,使其更接近于实际线形.修正后的成桥线形近似为各段悬链线与短直线段交替连续的混合线形.以三汉矶大桥为例,利用有限元法计算出索夹端面处主缆的主拉应力及索夹相对转角,代入WYATT公式,计算出主缆在各个索...  相似文献   

20.
为了精确计算垂度效应引起的超长斜拉索刚度折减,基于无弹性悬链线理论和弹性悬链线理论分别建立了斜拉索等效弹性模量的数值算法和简化公式算法。利用沪通长江大桥最长斜拉索作为算例,对比分析了该文方法与传统Ernst公式的计算精度。结果表明:Ernst公式对于低应力水平的斜拉索精度不高,误差高于10%,甚至高达17%;随着应力的增大,误差逐渐减小到1%以内。该文简化公式算法误差不超过0.3%,精度高于Ernst公式。Ernst公式计算结果高于数值解,而该文简化公式计算结果略低于数值解。索受力前后线密度的变化对等效弹性模量的影响可忽略不计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号