首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
利用相变材料物相转变时吸收或释放大量热量而本身温度保持不变的特性,用溶胶-凝胶法制备PEG/Si O2相变颗粒,并将其以等体积替代法替代粒径小于0.6 mm的细集料应用于沥青混合料中。考察了PEG/Si O2相变颗粒对4种不同级配的沥青混合料温度敏感性及高温稳定性的影响。结果表明,PEG/Si O2相变颗粒的掺入可降低沥青混合料的温度敏感性,并且掺量越大效果越明显,当其掺量达到5%时,可在自然光照条件下降温5℃以上,而级配对沥青混合料的温度敏感性影响不明显。PEG/Si O2相变颗粒对沥青混合料的高温稳定性影响与相变颗粒的掺量及沥青混合料的级配类型有关。相变颗粒的掺入在降低沥青混合料最高温度的同时,可降低沥青混合料发生高温车辙病害的可能性。  相似文献   

2.
试验通过比较重要的热物性指标(毛体积密度、导热系数、比热容),研究在沥青混合料中加入相变材料(PEG2000/SiO_2)后相变沥青混合料与普通沥青混合料之间热物性的差异。结果表明:加入相变材料后提高了沥青混合料比热容,3%与5%相变材料掺量的相变沥青比热峰值分别为1.3和1.15J/(g·K),而基质沥青混合料的比热容随温度改变数值变化较为微小;3%、5%掺量的沥青混合料在40℃时相变沥青混合料开始相变,50℃左右导热系数达到最小约为1.17和1.0 W/(m·K),相变沥青混合料导热系数图呈凹曲线,添加相变材料可以在其相变温度段降低其导热系数,有效提高路面的高温稳定性。  相似文献   

3.
选用碳酸钙为壁材,石蜡为芯材,采用原位聚合法制备碳酸钙-石蜡复合相变材料,通过综合热分析仪对碳酸钙-石蜡复合相变材料储热性能进行表征,复合相变材料的相变焓及相变峰温分别为120. 1J/g,相变峰温为54. 1℃。将碳酸钙-石蜡复合相变材料掺入沥青混合料后对其的路用性能和路面降温效果进行评价。试验结果表明:当复合相变颗粒掺量达到5%时可降低试件温度约5℃,复合相变颗粒掺入沥青混合料后对其低温抗裂性和水稳定性的影响不大,有利于沥青混合料的高温稳定性。  相似文献   

4.
《公路》2017,(11)
在掺量13%硅藻土改性沥青中加入废橡胶粉制备复合改性沥青,通过沥青胶浆性能试验及沥青混合料马歇尔试验、浸水马歇尔试验、冻融劈裂试验和车辙试验研究复合改性后沥青常规性能及混合料的路用性能,试验结果表明:随着废橡胶粉掺量的增加,复合改性沥青高温稳定性接近硅藻土改性沥青,黏度和抗剪能力不断增加,复合改性沥青和矿料之间结合的紧密程度增大,沥青混合料稳定性、耐久性能提高,沥青性能与废橡胶粉的掺量不成正比,掺量17%时硅藻土、废橡胶粉和沥青相互结合的稳定性较好,沥青及沥青混合料高温稳定性、耐久性综合最优。  相似文献   

5.
为降低炎热季节沥青路面温度,提高沥青路面的高温稳定性,减少沥青路面高温车辙病害的产生,同时减少有毒的有机沥青改性剂或路面涂料的使用,采用无机矿质粉末负离子粉作为新型环保沥青改性剂,制备了具有主动降温功能的沥青混凝土(active pavement cooling asphalt concrete,APC-AC)。通过室内车辙板温差试验与室外光照试验,研究了不同负离子粉掺量对APC-AC路面降温性能的影响,并以降温性能为参考指标推荐了负离子粉最佳掺量;借助Hot Disk 2500S导热系数仪对APC-AC及普通沥青混凝土的导热系数、比热容及导温系数进行测试,研究了负离子粉对APC-AC的热学参数影响规律;对APC-AC及普通沥青混凝土进行路用性能试验,研究了负离子粉对沥青混合料高温性能、低温性能、水稳定性的影响。结果表明:与普通沥青混合料相比,APC-AC具有较明显的路面降温效果,当负离子粉掺量为沥青质量的16%时,APC-AC车辙板室内温差试验表面降温幅度为5.9℃,室外光照试验表面温度可降低7.4℃;APC-AC的导热系数、导温系数相较于普通沥青混凝土分别降低9%和20%,比热容则提升14%;与普通沥青混凝土相比,APC-AC的动稳定度提高16%~42%,负离子粉对沥青混凝土的水稳定性与抗裂性能基本没有不良影响。  相似文献   

6.
分别制备不同SBS掺量和稳定剂掺量的SBS改性沥青胶浆和混合料,并通过BBS拉拔试验和冻融劈裂试验、汉堡车辙试验,系统研究了SBS改性沥青胶浆的黏附性及其混合料的抗水损性能,探究了两者之间的联系。研究表明:SBS的掺入增强和提升了沥青的黏附性和沥青胶浆的抗水敏感性;SBS改性沥青胶浆的黏附性及其混合料的抗水损性能均随着SBS掺量的增加而不断提升,均随着稳定剂掺量的增加先提升后下降,SBS掺量为4.5%的改性沥青最优稳定剂掺量为0.15%;冻融劈裂抗拉强度比TSR较损害变形速率MR能更好地反映沥青混合料对水的敏感性,冻融劈裂试验较汉堡车辙试验更适用于评价SBS改性沥青混合料的抗水损性能。  相似文献   

7.
对木质素纤维和玄武岩纤维的沥青胶浆以及沥青混合料的高温、低温性能进行试验,对比分析不同纤维的性能。采用动态剪切流变试验和锥入度试验评价纤维沥青胶浆的高温性能,延度试验评价低温性能;选取SMA-13沥青混合料,通过车辙试验研究两种纤维对沥青混合料高温稳定性的增强作用,劈裂试验评价低温抗裂性的改善效果。研究结果表明:玄武岩纤维沥青胶浆的高温性能优于木质素纤维沥青胶浆;玄武岩纤维沥青混合料动稳定度和劈裂强度均要较木质素纤维高,且当玄武岩纤维掺量为0.3%~0.4%时其改善效果最佳。研究结果可为纤维在沥青混合料中的应用提供参考。  相似文献   

8.
为了研究中空聚酯纤维沥青混合料的热阻特性及路用性能,首先采用Hot Disk法和双平板法分别测试纤维沥青胶浆的热物性和中空聚酯纤维沥青混合料的导热系数,然后采用室内光照系统测试中空聚酯纤维沥青混合料表面和内部温度随时间的变化规律,并对中空聚酯纤维沥青混合料的路用性能进行验证,最后基于微观形貌分析其阻热及增韧机理。研究结果表明:掺量为2%的中空聚酯纤维沥青胶浆的导热系数较普通聚酯纤维降低了22. 6%;当纤维掺量为0. 2%时,30℃下的沥青混合料导热系数较普通沥青混合料减小了0. 403 W/(m·K);中空聚酯纤维掺量为0. 1%,0. 2%,0. 3%的沥青混合料4 cm层位处的降温幅度最大分别为1. 1,1. 6,2. 8℃,8 cm层位处的降温幅度最大分别为1. 8,2. 7,3. 8℃,说明中空聚酯纤维具有一定的阻热性能,降低了沥青混合料内部的温度;中空聚酯纤维与沥青和矿粉形成"结构沥青",显著改善了沥青混合料的高温性能和低温抗裂性能。  相似文献   

9.
分析了两种温拌剂对橡胶沥青胶浆性能及其混合料路用性能的影响。结果表明:就沥青胶浆而言,Sasobit的降粘特性优于EWMA-1且有利于提高胶浆抗车辙性能;而EWMA-1有利于减缓橡胶沥青的老化。就橡胶沥青混合料而言,掺Sasobit使得混合料抗车辙性能提高36.9%,而水稳定性、低温抗裂性及疲劳性能分别衰减3.7%、15.9%和19.8%,掺EWMA-1低温抗裂性和疲劳性能分别提升2.5%和13.5%。掺Sasobit的最佳击实温度范围为132~170℃,掺EWMA-1的最佳击实温度范围为128~170℃,掺EWMA-1更易于压实。最后,建议Sasobit的掺量不宜超过3%,EMWA-1的掺量不宜超过0.6%。  相似文献   

10.
沥青胶浆中消石灰掺量显著影响沥青混合料路用性能。该研究利用不同掺量的消石灰替换矿粉后配制沥青胶浆,进行软化点、动态剪切流变试验及粘度试验,研究消石灰对沥青胶浆高温性能,抗老化性能和施工和易性的影响,进而确定生产过程中消石灰掺配比例。结果表明,消石灰替换矿粉后,沥青胶浆高温性能有明显改善,但过量的消石灰会影响沥青混合料综合路用性能,故建议消石灰掺量不超过30%。  相似文献   

11.
掺加PR PLASTS沥青混合料路用性能试验研究   总被引:2,自引:0,他引:2  
通过试验研究了添加不同剂量PR PLASTS抗车辙剂对沥青混合料路用性能的改善作用。结果表明,添加PR PLASTS后,沥青混合料的抗水损坏性能,尤其是其高温抗车辙能力得到提高,掺量为0.2%和0.4%时改善幅度较大;沥青混合料的低温抗裂性无明显改善,当PRPLASTS完全溶解于沥青后,沥青混合料的动稳定度很高,但其低温性能较差;高温下PR PLASTS颗粒发生物理变形,冷却后在集料骨架内搭桥牵制集料颗粒的移动,从而改善沥青混合料的路用性能。  相似文献   

12.
为研究集料化学成分对沥青胶浆高温流变特性的影响,分别将5种氧化物粉末与克拉玛依70#沥青混合并制备成沥青胶浆。利用动态剪切流变仪(DSR)测试沥青胶浆的复数剪切模量和相位角,并以车辙因子G*/sinδ表征沥青胶浆的高温流变特性。结果表明:5种氧化物粉末均能提高沥青胶浆的车辙因子,改善高温性能。在65℃下,掺加氧化镁的沥青胶浆车辙因子提高4.5倍,掺加二氧化硅或氧化钙的沥青胶浆车辙因子提高3倍,掺加氧化铝或氧化铁粉的沥青胶浆车辙因子略有提高。  相似文献   

13.
为研究玄武岩纤维对沥青混合料性能的增强作用,结合湖南省张家界至花垣高速公路工程,对玄武岩纤维沥青胶浆进行动态剪切流变试验和锥入度试验评价其高温性能,采用车辙试验研究纤维对沥青混合料高温稳定性的增强作用;利用浸水马歇尔试验评价纤维对沥青混合料水稳定性的改善效果.研究结果表明:玄武岩纤维胶浆抗车辙因子显著提高,抗剪切能力明显增强;玄武岩纤维沥青混合料的动稳定度和残留稳定度均得到提高,且在纤维掺量一定范围内,增长率比较快,掺量达到某一临界值时,增长率开始下降;AC-30C沥青混合料玄武岩纤维最佳掺量为0.3%.研究成果可为玄武岩纤维在道路工程中的应用提供参考.  相似文献   

14.
为探索生活垃圾焚烧飞灰(简称飞灰)作为填料对沥青胶浆流变性能的影响,通过改变飞灰替代矿粉的质量分数(0%,30%,40%,50%,60%)制备粉胶比为1. 0的飞灰矿粉复合沥青胶浆。分别利用动态剪切流变仪(DSR)、弯曲梁流变仪(BBR)实验来研究不同飞灰掺量下沥青胶浆在高温和低温条件下的黏弹性质,并分析影响原因。试验结果表明:与矿粉沥青胶浆相比,当飞灰替代矿粉的质量分数由30%增长到60%时,沥青胶浆的车辙因子平均提高13. 35%,蠕变劲度平均增长60. 10%,沥青胶浆的高温抗车辙能力逐渐提高,而低温抗裂性能明显降低;沥青胶浆的低温抗裂性能是影响飞灰掺量的主要因素,且当飞灰掺量大于50%时,车辙因子增长速率趋近为零,而蠕变劲度增长速率显著变大;综合考虑沥青胶浆流变性能和飞灰资源化利用,确定飞灰替代矿粉最佳质量分数为50%,供生产和控制用量时参考。  相似文献   

15.
布敦岩沥青改性沥青胶浆高温动态流变性能的试验研究   总被引:3,自引:0,他引:3  
为了评价不同掺量的布敦岩沥青对基质沥青的改性效果,采用先进的动态剪切流变仪Advanced Rheometer(AR)对岩沥青改性沥青胶浆的高温动态流变性能进行了试验研究,主要评价指标有相位角、储能模量、车辙因子和动粘度等。研究发现岩沥青改性沥青胶浆的高温性能明显优于基质沥青;车辙因子和动粘度指标显示岩沥青改性沥青胶浆具有与SBS改性沥青胶浆相当的抗车辙性能,但是,其温度敏感性高于SBS改性沥青胶浆;岩沥青掺量对胶浆性能影响较明显,岩沥青与基质沥青质量比达到1∶1时,沥青胶浆的高温性能已经得到明显改善,可以满足路面使用性能要求。  相似文献   

16.
为评价玄武岩纤维的掺入对沥青混合料性能的改善效果,通过动态剪切试验、拉伸试验对未掺玄武岩纤维和掺6%沥青质量的玄武岩纤维的沥青胶浆的抗剪性能、延展性以及AC-13C沥青混合料和掺玄武岩纤维的沥青混合料的路用性能展开研究。结果表明,纤维的掺入可改善沥青胶浆的抗剪切能力和高温稳定性;纤维掺量为沥青混合料质量的0.4%时,沥青混合料的高温稳定性、低温抗开裂能力、水稳定性等路用性能最优。  相似文献   

17.
高RAP掺量再生沥青混合料在我国沥青路面养护中得到越来越多的应用,厂拌热再生中RAP掺量可达到30%~50%,就地热再生中RAP掺量更是达到80%以上。在室内设计RAP掺量为0%、30%、50%、85%和100%的5种AC-13级配沥青混合料,依托UTM试验机分别采用动态蠕变试验、半圆弯曲试验和多重冻融劈裂试验对混合料的高温抗车辙性能、低温抗裂性能和抗水损害性能进行评价,结果表明:相比新沥青,RAP沥青胶结料高温性能增强而低温性能衰退;随着RAP掺量的增加,再生沥青混合料的高温抗车辙性能增强,低温抗裂性能和抗水损害性能降低,100%RAP混合料受到级配细化的影响,抗车辙性能不及新沥青混合料;多重冻融劈裂相比单次冻融劈裂能够更好地评价再生混合料的水稳定性。  相似文献   

18.
采用复配的2种复合纤维进行了纤维沥青胶浆的旋转粘度试验(RV)、Vialit试验、接触角试验、网篮析出试验、扫描电镜试验(SEM)和沥青混合料的扭剪试验、车辙试验,分析了复合纤维与其他单纤维沥青胶浆的粘度、粘附性、吸持性能、混合料扭剪强度和动稳定度等技术性能,结果表明随着复合纤维的加入,复合纤维沥青胶浆的粘度、表面能、吸持沥青能力随之增大,大幅提高了混合料的车辙动稳定度、扭剪强度,复合纤维Ⅰ、Ⅱ均可以较好地提高沥青混合料的抵抗高温变形能力。  相似文献   

19.
介绍了纳米改性沥青混合料的原材料及配合比设计,分析了纳米改性沥青的改性机理;以4%、5%、6%3种纳米SiO_2和CaCO_3复合材料掺量作对比,通过车辙试验、低温弯曲试验、浸水马歇尔和冻融劈裂试验综合评价了纳米改性沥青混合料的高、低温性能及水稳定性,结果表明,纳米沥青混合料的高温性能及水稳定性较好、低温性能一般,整体上纳米改性沥青混合料的路用性能较优,最佳纳米SiO_2和CaCO_3复合材料掺量为5%。  相似文献   

20.
将废旧塑料作为改性剂制备改性沥青,能降低废旧塑料环境污染,也可解决道路建筑材料需求难题。LDPE改性沥青混合料的高温性能较好,但低温性能不足,增塑剂DOP能改善LDPE改性沥青混合料的低温性能。文中通过对LDPE+DOP复合改性沥青进行室内试验,得出LDPE的最佳掺量为5%~6%,DOP的最佳掺量为1.5%~2.5%;在LDPE及DOP最佳掺量下分别对AC-13C沥青混合料进行高温抗车辙、低温抗开裂及抗水损害等路用性能试验,得出AC-13C(6%LDPE)沥青混合料的高温抗车辙能力最优、AC-13C(1.5%DOP)沥青混合料的低温抗开裂能力最优、AC-13C(2.5%DOP+6%LDPE)沥青混合料的抗水损害能力最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号