首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
大跨桥上减振型板式轨道凸形挡台受力分析   总被引:2,自引:0,他引:2  
以孔跨布置为(94+168+84)m的某预应力钢筋混凝土连续刚构桥为例,对减振型板式轨道凸形挡台进行受力分析,提出在进行大跨桥上板式轨道凸形挡台设计时,应考虑梁体上翼缘纵向位移使凸形挡台承受的附加力;对于本文算例,采用长度为3 920 mm短板时的混凝土凸形挡台受力仅为采用长度为4 930 mm长板的80%左右,短板对凸形挡台的结构设计更为有利。  相似文献   

2.
板式轨道凸形挡台检算   总被引:2,自引:2,他引:0  
首先介绍了Ⅰ型板式无碴轨道凸形挡台的结构及其作用,然后分别对圆形和半圆形凸形挡台进行结构分析和受力检算。凸形挡台的计算是在参考日本A型板式无碴轨道计算原理的基础上,根据力学基本原理结合建立实际力学模型进行的。最终,根据检算结果,通过分析比较两种结构,提出设想与合理建议。  相似文献   

3.
CRTSⅠ型板式无砟轨道梁端凸形挡台纵向力分析   总被引:1,自引:1,他引:0  
针对近几年大跨桥上CRTSⅠ型板式无砟轨道梁端半圆凸形挡台的剪切破坏现象,参考国内某连续刚构桥实际参数,根据桥梁梁端半圆形凸形挡台的配筋计算出凸形挡台的设计承载力,基于有限元方法,建立线-板-桥-墩一体化计算模型,计算分析在不同扣件阻力,桥梁温度跨度和桥墩线刚度等因素下的梁端半圆形凸形挡台受力。结果表明:扣件纵向阻力是梁端凸台剪切破坏的主要影响因素,随着扣件纵向阻力的增大,梁端半圆形凸形挡台所受纵向力也随之增大,当扣件纵向阻力达到17.0k N/m/轨时,凸形挡台所受纵向力将会超过凸形挡台的抗剪承载力,即发生破坏;桥梁温度跨度、桥墩线刚度、有无起制动力对梁端半圆形凸台所受纵向力影响很小。  相似文献   

4.
根据桥上板式轨道结构特征,利用有限元方法建立一座连续桥梁模型,计算和分析伸缩、挠曲和制动工况下凸台的受力特征.分析结果表明:伸缩工况下,连续梁桥凸形挡台受力最大值产生在离连续梁固定支座距离最远的活动端附近.桥上布设小阻力扣件能够有效减轻凸台的破坏.凸形挡台所受纵向力最大值会随着连续梁桥跨的增大而增大.挠曲工况,最不利的情况即列车满布连续梁固定支座一面两跨时,可以根据挠曲力曲线的正负性、增减性以及凹凸性来推测凸台受力特征.且这种情况下凸台受力较小,设计或检修时,可以不必作为重点考虑.制动工况时,凸形挡台所受纵向力最大值将发生在连续梁桥跨中.  相似文献   

5.
减振型板式无砟轨道轨道板受力分析研究   总被引:2,自引:2,他引:0  
介绍减振板式无砟轨道的结构组成和计算参数,建立了梁体有限元计算模型,计算分析了列车荷载作用下减振板式无砟轨道的受力,考虑轨道板受温度梯度荷载、桥梁挠曲变形,在制造、运输和施工时对减振轨道板的受力影响,对轨道板在这些因素下的受力进行了分析,为结构设计提供计算依据.  相似文献   

6.
通过对成灌线桥上CRTSⅠ型板式无砟轨道施工过程的总结,介绍了CRTSⅠ型板式无砟轨道的施工工艺及施工技术,主要包括无砟轨道铺设条件评估,基础表面处理,混凝土底座施工,凸形挡台施工,轨道板运输和存放,轨道板施工,水泥乳化沥青砂浆的配制和灌注,凸形挡台周围树脂灌注,钢轨精调作业和轨道几何状态检测,对CRTSⅠ型板式无砟轨道的施工具有一定的指导意义。  相似文献   

7.
通过对成灌线桥上CRTS I型板式无砟轨道施工过程的总结,介绍了CRTS I型板式无砟轨道的施工工艺及施工技术,主要包括无砟轨道铺设条件评估,基础表面处理,混凝土底座施工,凸形挡台施工,轨道板运输和存放,轨道板施工,水泥乳化沥青砂浆的配制和灌注,凸形挡台周围树脂灌注,钢轨精调作业和轨道几何状态检测,对CRTS I型板式无砟轨道的施工具有一定的指导意义.  相似文献   

8.
结合高铁实训基地无砟轨道的施工,从下部基础评估及施工、施工测量、底座及凸形挡台施工、轨道板铺设及精确调整、水泥乳化沥青砂浆和凸形挡台周围树脂灌注,介绍CRTS Ⅰ型板式无砟轨道施工技术.  相似文献   

9.
CRTSⅠ型板式无砟轨道施工工艺研究   总被引:2,自引:0,他引:2  
结合武广客运专线武汉综合试验段CRTSⅠ型板式无砟轨道施工工艺试验研究,在现场试验的基础上,系统总结CRTSⅠ型板式无砟轨道施工工艺,主要包括无砟轨道铺设条件评估、基底面处理、支撑层及凸形挡台施工、基准器测设、轨道板运输及存放、轨道板吊装就位、轨道板精调、灌注袋铺放、乳化沥青砂浆的制备和灌注、凸形挡台外缘树脂充填、充填式垫板施工等。  相似文献   

10.
李立娜 《铁道建筑》2012,(8):110-112
结合武广客运专线武汉综合试验段CRTSⅠ型板式无砟轨道施工工艺试验研究,系统总结了CRTSⅠ型板式无砟轨道施工工艺,主要包括施工前准备、混凝土底座及凸形挡台施工、基准器测设安装、轨道板的运输、装卸及临时存放、轨道板初铺定位、轨道板精调、乳化沥青砂浆的制备和灌注、凸形挡台树脂灌注等施工中的设备、施工方法和验收标准。施工实践证明,高质量地完成CA砂浆调整层的施工才能保证轨道的整体性、稳定性和耐久性。  相似文献   

11.
CRTSⅠ型板式无砟轨道梁端半圆形限位凸台是无砟轨道结构受力的薄弱环节,其承载力是结构设计的关键。本文引入扩展有限元计算方法,对梁端限位凸台伤损破坏过程进行仿真分析,获取了裂纹产生及扩展过程,并通过荷载-裂纹开口量曲线获取限位凸台开裂荷载和极限承载力。分析结果表明:限位凸台在54.5 k N荷载下开始产生裂纹,在荷载达到85.6 k N时失去承载能力,此时最大裂纹开口量为0.44 mm。扩展有限元分析方法可为今后无砟轨道限位结构精细化设计及检算提供一种新思路。  相似文献   

12.
针对桥上再创新双块式无砟轨道抗剪凸台进行受力分析和计算,考虑了列车纵向力、温度荷载、桥梁的挠曲变形、列车横向摇摆力、未平衡的离心力、曲线上无缝线路钢轨引起的附加力等对抗剪凸台的受力影响,并分别推导出了这些荷载影响因素对抗剪凸台受力的计算公式。最后对32m简支梁上的抗剪凸台进行受力计算和配筋设计,得出抗剪凸台周围采用弹性填充材料时较无填充材料时的受力明显减小,所以抗剪凸台周围应采用弹性填充材料。  相似文献   

13.
路基下沉地段采用抬板注浆工艺抢修后,CRTSⅠ型板式无砟轨道的凸台受力将发生变化,因此建立有限元模型对凸台加高后CRTSⅠ型板式无砟轨道的主要部件受力情况进行了对比分析。结果表明:轨道板抬高高度在10 cm以下时,可不对凸台和树脂进行加高处理;轨道板抬高10~15 cm时,需加高凸台和树脂5~10 cm;凸台及树脂加高高度不能超过10 cm。  相似文献   

14.
路基下沉地段采用抬板注浆工艺抢修后,CRTSⅠ型板式无砟轨道的凸台受力将发生变化,因此建立有限元模型对凸台加高后CRTSⅠ型板式无砟轨道的主要部件受力情况进行了对比分析。结果表明:轨道板抬高高度在10 cm以下时,可不对凸台和树脂进行加高处理;轨道板抬高10~15 cm时,需加高凸台和树脂5~10 cm;凸台及树脂加高高度不能超过10 cm。  相似文献   

15.
根据梯形轨道的结构特点,建立梯形轨道在长大坡道上的叠合梁计算模型。长大坡道上梯形轨道在制动力作用下其沿线路方向的荷载增加,垂向荷载相应减少,对梯形轨道纵向稳定性而言,是不利的。分析长大坡道上梯形轨道的纵向力传递机理,扣件的纵向阻力、凸挡台的抗剪强度、凸挡台侧壁缓冲垫的刚度是梯形轨道纵向力传递的控制因素。采取控制变量的方法,研究三者参数变化对轨道的内力和位移的影响。结果表明:在外在荷载作用下,长大坡道上梯形轨道钢轨爬行大于水平线路,凸挡台抗剪强度满足要求,并提供不同扣件纵向阻力和缓冲垫刚度对结构的影响。  相似文献   

16.
CRTSⅠ型板式无砟轨道路基沉降抬板维修技术研究   总被引:2,自引:2,他引:0  
由于地质条件、建设施工等原因,部分高速铁路路基出现不同程度的沉降,影响行车的平顺性。介绍高速铁路CRTSⅠ型板式无砟轨道路基沉降抬板维修方案的若干技术问题,提出抬板高度及抬板填充材料刚度的合理取值。CRTSⅠ型板式无砟轨道路基沉降可通过扣件调整和抬升轨道板增加充填层厚度等方式进行整治维修。为保证抬升轨道板后凸型挡台受力,建议圆形凸台地段抬板高度最大不超过45 mm,半圆形凸台地段不应进行抬板。轨道板抬升采用的填充材料刚度宜与原CA砂浆层保持一致。  相似文献   

17.
本文介绍了板式轨道在国内外使用情况的基础上。对板式轨道结构型式及设计关键技术特点进行了研讨,重点介绍板式轨道的主要部件轨道板、CA砂浆、凸形挡台等的设计思路探讨。  相似文献   

18.
借助有限元软件ANSYS,建立了板式轨道、路基的三维有限元模型,并结合遂渝线CRTS Ⅰ型板式轨道进行地震荷载时程分析,模拟地震荷载作用下板式轨道结构中轨道板、底座板、CA砂浆和圆形凸台的动应力、动位移的响应.结果表明,在地震荷载作用下,轨道结构横向应力和纵横向位移响应随烈度增加1度而增加1倍;竖向应力响应由于受初始应力影响,压应力较大,总体来说,轨道结构各向最大动应力较小,不会使轨道结构破坏;轨道结构横向位移响应大于竖向位移响应,轨道结构位移响应对轨道几何形位有一定影响,建议地震后对列车行驶速度限制;在路基稳定的情况下,板式轨道结构本身的变形和受力很小,不是导致轨道结构破坏或变形的原因.  相似文献   

19.
高增增 《铁道建筑》2015,(2):104-106
在CRTSⅡ型板式无砟轨道结构中,水泥乳化沥青砂浆调整层主要起填充、支撑、传力以及提供适当的刚度和弹韧性等作用,是CRTSⅡ型板式无砟轨道系统重要的组成部分。采用有限元法建立CRTSⅡ型板式无砟轨道计算模型,研究列车荷载作用下不同砂浆调整层空隙状态对轨道结构的受力影响,为施工期间的质量验收和运营期间的轨道养护维修提供指导。  相似文献   

20.
基于有限单元法的桥上无缝道岔设计计算理论,分析采用凸型挡台基础连接形式桥上无缝道岔交叉渡线钢轨、传力部件、轨道板和桥梁的受力与变形,归纳出桥上无缝道岔交叉渡线受力和变形规律,并对今后无砟轨道桥上无缝道岔交叉渡线设计提出建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号