首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
针对深厚淤泥质软土地区、高承压水等不利条件下的基坑开挖对临近运营地铁隧道结构影响问题,以临近武汉地铁2号线某综合管廊基坑施工为背景,构建了三维数值分析模型,系统分析了基坑施工对自身围护结构变形、地铁隧道结构位移及受力的影响。研究结果表明:基坑开挖引起的围护结构水平向、竖向最大位移值分别为11.5 mm、1.44 mm,地铁隧道结构最大水平向、竖向位移分别为0.42 mm、0.21 mm,盾构管片最大轴力、剪力及弯矩分别为1 479.65 k N/m、48.38 k N/m、109.77 k N·m/m,数值分析结果均在规范限值以内。研究成果可为类似基坑施工对临近建构筑物安全风险评估提供借鉴。  相似文献   

2.
对在建工程六盘水隧道施工工艺进行研究,从理论与实际两个角度出发,结合有限元计算,验算了开挖过程中隧道的受力情况以及变形沉降情况,对施工路段进行现场沉降量的监测,及时将监测结果反馈给施工方。最终得到理论计算值的拱顶沉降量为15.31 mm,实际监测值拱顶沉降量为14.20 mm;对开挖过程中的围岩内力进行计算,可知最大弯矩值为4.92 k N·m,产生于洞口拱脚处,最大轴力值为172.4 k N,产生于洞口拱腰处,与监测结果基本符合,结果表明当前施工工艺具备较高的安全系数。  相似文献   

3.
针对工程实际情况,采用有限元软件对路堑高边坡支护方案进行了边坡稳定性和变形、受力分析。在此基础上进行了桩间距的优化分析,明确了边坡的有效塑性区位置,得出了桩身水平位移的变化呈“7”字形变形,桩顶的水平位移值为13.5mm,最大水平位移值为15.3mm。同时通过对比分析是否施加锚索两种工况,明确了预应力锚索不仅有利于减小桩身的剪力值和弯矩值,还有利于桩身剪力值和弯矩值的均匀分布。最后对不同桩间距工况下边坡的稳定性进行了分析,得出合理的桩间距为4.5m。  相似文献   

4.
为确定合理的临时支撑间距与拆除时机、负弯矩区剪力连接件类型及是否设置桥面板预留槽等,以便于钢-混组合连续梁桥设置合理的预拱度,以某(40+75+75+40)m钢-混组合连续梁桥为背景,采用MIDAS Civil软件建立全桥有限元模型,分析相关设计与施工因素对预拱度设置的影响规律。结果表明:钢梁拼装时应采用临时密支撑,并在正弯矩区桥面板混凝土浇筑后再拆除临时支撑;负弯矩区应采用抗拔不抗剪连接件,桥面板正、负弯矩交界区域应设置桥面板预留槽;仅边跨设置向上的混凝土收缩徐变预拱度值,而中跨不需设向下的混凝土收缩徐变预挠度值。该桥边、中跨跨中钢梁制造预拱度分别为17.7mm和161.9mm,施工时考虑了10mm的弹性变形预抬值。成桥时组合梁线形误差在±10mm内,满足设计要求。  相似文献   

5.
城市下穿隧道引坡段多采用挡土墙和U型槽结构,U型槽结构常在引坡路面结构低于地下水位段采用。为研究U槽结构的配筋设计方法和优化方案,基于Midas软件,U型槽采用支承在弹性地基上的结构模型进行计算分析,对配筋方案进行验算。拟定U型槽按侧墙高度6m、8m和10m设计为三种结构尺寸形式。侧墙、底板结构随侧墙高度增加而增厚,侧墙根部厚度最大,悬臂端厚度最小,中间以1∶12.5的斜率变化。不同侧墙高度的结构钢筋布置相似,随侧墙高度增加,主要受力钢筋直径从25mm增大到32mm。计算表明,结构弯矩和剪力最大值位于底板与侧墙相交处,U型槽拟定的结构设计方案的正截面抗弯承载力、斜截面抗剪承载力和裂缝宽度均满足规范要求。侧墙高8m~10m的U型槽结构主受力钢筋直径从32mm降为28mm,结构验算符合规范要求。直径过大的钢筋现场加工困难,在结构验算符合规范的前提下,可适当减小钢筋直径。  相似文献   

6.
《公路》2017,(12)
以门式双排桩为例,运用有限元数值软件,研究了水平向和竖直向地震共同作用下双排桩边坡的破坏形态和受力性状。三维模型中,土体采用弹塑性本构模型,桩假定为线弹性,桩土之间设置接触单元。通过研究,得出如下结论:(1)双向地震荷载作用下,桩身受力最大值出现时刻为4.66s处;桩身弯矩沿桩身向下呈S型布,桩身剪力沿桩身向下呈抛物线型分布。(2)随着地震荷载的逐渐增大,桩身最大弯矩剪力值亦逐渐增大;当地震荷载从0.4g增大至破坏前工况时,动力作用下附加弯矩剪力增幅急剧增大。在整个过程中,后排桩弯矩剪力最大值始终大于前排桩受力最大值。(3)双向地震荷载作用下,随着地震荷载的逐渐增大,边坡最大土体位移从静力作用时的46.3mm增大到0.4g时的51.6mm;同一排桩桩顶与桩顶之间土体位移也逐渐增大,从抗滑桩之间滑移的趋势越明显,边坡越不安全;等效塑性应变分布带从坡顶附近滑带处扩展到边坡滑带中下部,坡顶附近的最大塑性应变值逐渐增大,从静力作用时的0.04增大到0.10,趋近临界状态。  相似文献   

7.
某大桥桥塔采用门形框架结构,桥塔上横梁为单箱单室预应力混凝土结构,高度7~19m,横梁顶面宽度为8.565m。针对该桥桥塔上横梁结构特点、施工难点及工期要求,上横梁与上塔柱采用异步施工方案,待塔身施工完成后再施工上横梁。该桥塔上横梁采用型钢托架方法进行施工。为了保证上横梁在施工中的安全,建立了托架的有限元模型,从强度、刚度及稳定性等方面对该托架进行了验算,同时考虑桥塔与托架的相互作用。分析结果表明:在最不利工况荷载作用下,上横梁托架结构的强度、刚度、稳定性均满足施工要求。  相似文献   

8.
为研究桥墩撞击剪切动力响应问题,基于Hamilton原理,将剪切变形引入碰撞体系偏微分方程中,考虑材料的动态力学性能,通过Laplace变换和Matlab软件求解,建立了考虑剪切效应的钢筋混凝土和钢骨混凝土桥墩动态剪力方程和动态弯矩方程,揭示了桥墩撞击动力响应受剪切效应影响的力学特征。理论计算和试验结果对比表明:剪切变形对桥墩试件峰值弯矩和峰值主拉应力的平均影响分别为8.82%和18.83%,剪切效应对桥墩撞击动力响应的影响较大,不可忽略。在桥墩抗撞强度设计中,不仅需要验算桥墩最大弯矩截面的拉应力,还应验算墩底的主拉应力,以体现剪切效应对桥墩撞击剪切破坏的影响,保证桥墩结构的安全。  相似文献   

9.
轻型桥台自身平面内的弯曲问题通常采用Winkler地基上Bernoulli-Euler梁理论来进行分析,以对称中心的弯矩和基底应力作为最大值进行验算。考虑轻型桥台的剪切变形影响,采用Winkler地基上Timoshenko梁理论进行分析,得到了最大弯矩偏离对称中心,且比对称中心弯矩大得多;以对称中心弯矩作为最大值进行设计不安全;目前桥梁工程文献所推荐的设计验算方法值得探讨等结论。分析了最大弯矩随剪切刚度和基床系数、最大弯矩位置随襟边宽度的变化规律,探讨了以桥台基础不隆起为条件的襟边宽度合理取值问题。  相似文献   

10.
彭红霞  程云妍  王怀东 《隧道建设》2014,34(12):1137-1142
为验证矿山法隧道设计的合理性和下穿货运铁路隧道的安全性,采用数值模拟方法,对宁和城际矿山法区间下穿宁芜货运铁路隧道的影响进行了研究分析。结果表明,区间隧道施工完成后,宁芜货运铁路隧道的最大沉降为6.7 mm,最大水平位移为1.2mm,引起的最大附加弯矩为32 k N·m,变形值满足货运铁路的运营要求,内力值也在结构的设计范围内。说明定向管棚+超前小导管的地层加固措施是可行的,矿山法隧道下穿铁路的设计是合理的,可为类似工程提供参考。  相似文献   

11.
李洪坤  姚亚东 《公路工程》2020,(1):135-139,145
基于呼和浩特市三环路特大桥,对其预应力连续梁桥悬臂施工控制进行了研究。结果表明,该桥挂篮最大剪力为268.82 kN、最大轴力为625.32 kN、最大弯矩为132.85 kN。在工作状态下,挂篮各杆件变形及受力能满足规范、设计要求。通过分析仿真模型的建立及控制参数具体取值,各标高测点理论值和实测值并不完全一致,变化幅度亦不十分显著,没有显著的规律性。理论值和实测值之间保持-4~2 mm范围内的差值变化。5.54 MPa是主要测点在中跨1/4截面和主梁悬臂根部受压应力的最大值,0.43 MPa是其最大拉应力值。现场实际监测的连续梁值和理论值具有较小偏差、变化规律比较类似,在施工控制中,所建模型能客观、准确地对实际施工进行反映,监测控制点切实可靠。  相似文献   

12.
苏宗贤  陈韶章  陈越  苏慈 《隧道建设》2018,38(5):790-796
为进一步综合分析长距离沉管隧道纵向内力和变形,保障其接头水密性,讨论了沉管隧道结构纵向静力分析计算模型和应考虑的一些问题,包括接头受力机制、GINA止水带选型和水密性检算,以及纵向沉降差与纵向弯矩和剪力的关系等。总结了简单而高效的弹性地基梁纵向计算模型及其接头模拟方法;提出使用地层-结构模式和强制位移法的三维壳体模型作进一步的补充细化分析;指出隧道纵向沉降曲线的曲率及曲率变化率分别影响着结构的纵向弯矩和剪力;给出接头的止水带选型及水密性验算工作如何与隧道结构纵向计算相互结合。  相似文献   

13.
为研究滑坡体强度参数变化对双排抗滑桩位移、内力分布以及前后排桩承担滑坡推力比例的影响,采用三维有限元分析模型,对滑坡体强度参数进行单因素分析。结果表明:改变滑坡体c,φ值对双排抗滑桩桩身弯矩和剪力最大值有影响,而对弯矩和剪力分布影响较小;对桩位移、内力以及前后排桩承担滑坡推力比例,c,φ值较小时,影响越明显,并随着c,φ值的增大,影响逐渐减小,且φ值比c值的影响更明显。  相似文献   

14.
邓渊  邱亚锋  李军  胡敏  薛新华 《公路》2021,66(12):149-154
杭州市富阳区北支江大桥主桥桥型采用35 m+95 m+95 m+35 m四跨下承式钢拱梁组合桥,引桥为连续钢箱梁桥,桥跨全长407.6m.为对桥面吊装施工的安全性进行验算,首先采用Midas建立全桥梁单元模型,施加移动荷载判断最不利位置节段,然后利用ABAQUS软件建立此最不利位置节段的钢箱梁有限元模型.施工阶段荷载考虑了结构自重、履带吊车单边开行压力(带载+空载)以及平板车单边开行压力(带载+空载),针对履带吊开行的两种工况进行了验算,得到了不同工况下桥梁结构所产生的应力和变形响应.结果 表明,模型最大应力值均小于钢材的屈服强度,Mises应力最大位置均随着吊车荷载的移动而出现在不同的临时支撑点位置;桥梁结构产生的最大竖向变形较小,最大值为11.61 mm.从应力和变形结果来看,北支江大桥履带吊车上桥面是安全可靠的.  相似文献   

15.
为了解徐变对逐跨施工连续箱梁桥剪力滞效应的影响,基于能量变分法及混凝土徐变理论,建立2跨逐跨施工连续梁考虑剪力滞效应的混凝土徐变次内力计算公式,并以跨径为30m+30m的逐跨施工现浇箱梁桥为例进行计算。结果表明:对于存在施工过程体系转化的逐跨施工连续梁桥,徐变次内力增加了梁体在负弯矩区的弯矩、减小了梁体正弯矩区段的弯矩;考虑徐变效应后,截面的剪力滞效应有所减弱。算例结构中,支座负弯矩区最大剪力滞系数减小20.26%,跨中正弯矩区的剪力滞系数增加了2.1%。  相似文献   

16.
为防止深中通道岛隧结合部暗埋段、E1管节、E2管节差异沉降过大,进而导致管节接头剪力键剪力及管节内力过大,通过对岛隧结合部沉管基础采取预加固措施,研究不同段落地基与基础参数,分析计算出E1管节预抬量合理值。通过室内试验及现场试验获取关键参数并开展大型三维有限元分析,研究管节应力及沉降特性。根据室内试验确定考虑预压30k Pa的1.0m厚碎石垫层变形模量取值为:0~30k Pa段为25.4MPa,30~110k Pa段为8.9MPa。根据现场试验确定块石垫层变形模量取值为50MPa。依据上述参数开展有限元分析,最终确定岛隧结合部沉管基础加固措施及管节的预抬量值为70mm。  相似文献   

17.
为研究单索面斜拉桥的受力特性,以东水门长江大桥(采用正交异性钢桥面板的单索面斜拉桥)为背景,采用ANSYS软件建立全桥三维有限元模型,计算上、下层桥面沿纵向和横向的轴力、剪力及弯矩分布规律,分析上、下层桥面及腹杆的最大、最小主应力。结果表明:上层桥面沿纵向轴力和剪力在斜拉索及桥塔处取得极值,沿横向轴力变化不大,剪力和弯矩在中纵梁处取得最大值;下层桥面沿纵向轴力在跨中及桥塔处取得极值,沿横向轴力变化不大,剪力和弯矩分别在桥面中部和侧边取得最大值;受斜拉索索力影响,上层桥面锚箱附近易发生应力集中,应力向两侧均匀传递,下层桥面荷载主要通过腹杆内、外侧进行传递,腹杆应力峰值在其两端与节点板连接处。  相似文献   

18.
店红一级公路采用跨径为(11.5+8.8+11.5)m的三孔连体式框架桥跨越既有铁路,为保证框架桥施工过程中既有铁路运营的安全,对框架桥施工范围内的线路进行预加固。预加固采用大纵梁加固体系,该体系主要由大纵梁、横抬梁、工字形钢枕以及支点桩基础组成,考虑列车的动力作用、大纵梁的结构连续性、横向抬梁的工作不均匀性、安装误差以及使用过程中支点不均匀沉降等因素,对框架桥向前顶进穿越线路过程中的破桩工况进行受力验算。验算结果表明:大纵梁最不利工况为上、下行线会车时,此时大纵梁同时承受两列车荷载作用;横向抬梁最不利工况为破除第二排支点桩工况;各工况的强度、刚度均满足规范和设计要求,能够最大程度保证既有铁路运营安全。  相似文献   

19.
为研究结合梁斜拉桥在悬臂施工阶段剪力滞效应的分布规律,以厦漳跨海大桥南汊主桥为背景,在实桥中布设4个测试截面,并采用ANSYS软件建立主梁有限元分析模型,对施工阶段结合梁的剪力滞效应进行现场测试和数值分析.分析结果表明:结合梁斜拉桥主梁在斜拉索轴向荷载和竖向荷载产生的弯矩共同作用下,存在较为显著的负剪力滞效应;在整个悬臂施工阶段,各截面有效宽度系数为0.85~0.95.根据分析结果,建议在对悬臂施工阶段进行应力验算时,混凝土板的应力应按初等梁理论计算的结果提高15%考虑;设计过程中可以忽略小纵梁对桥面结构剪力滞效应的影响,计算结果偏于安全.  相似文献   

20.
厦漳跨海大桥南汊主桥为跨径布置135m+300m+135m的双塔斜拉桥.该桥主梁采用钢-混结合梁,双工字形钢主梁、横梁和小纵梁形成钢构架,与混凝土桥面板通过剪力钉连接,在工字形钢主梁的上翼缘板上焊接锚拉板.对主梁进行整体和局部分析,并对主梁混凝土桥面板正应力和存放时间2个关键问题进行研究.分析结果表明:钢主梁和混凝土桥面板受力均满足规范要求,且有一定的安全储备;结合梁斜拉桥混凝土桥面板正应力分析中必须考虑弯矩和轴向力综合作用下的剪力滞效应的影响;混凝土桥面板存梁时间对主梁受力有影响,建议存梁时间不宜小于半年.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号