首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, three numerical algorithms for the identification of wheel–rail contact forces based on measured wheel disc strains on an instrumented railway wheelset are discussed and compared. The three algorithms include one approach resting on static calibration, one that is applying a Kalman filter and the third is exploiting an inverse identification scheme. To demonstrate and evaluate the alternative methods, two load cases including periodic excitation by sinusoidal wheel–rail irregularities and transient excitation by an insulated rail joint are considered. Based on a previously presented vehicle–track interaction model in the time domain, load scenarios are defined by taking the calculated vertical wheel–rail contact forces as the reference force to be re-identified by the proposed algorithms. The reference contact forces are applied on a finite element model of the wheel to generate synthetic observation data, that is, radial strains at the positions of the strain gauges, serving as input to the identification procedures. It is concluded that the inverse identification scheme leads to superior accuracy at higher computational cost. If on-line implementation and evaluation is required, the Kalman filter generates better accuracy than the static calibration approach.  相似文献   

2.
This article seeks to develop a longitudinal vehicle velocity estimator robust to road conditions by employing a tyre model at each corner. Combining the lumped LuGre tyre model and the vehicle kinematics, the tyres internal deflection state is used to gain an accurate estimation. Conventional kinematic-based velocity estimators use acceleration measurements, without correction with the tyre forces. However, this results in inaccurate velocity estimation because of sensor uncertainties which should be handled with another measurement such as tyre forces that depend on unknown road friction. The new Kalman-based observer in this paper addresses this issue by considering tyre nonlinearities with a minimum number of required tyre parameters and the road condition as uncertainty. Longitudinal forces obtained by the unscented Kalman filter on the wheel dynamics is employed as an observation for the Kalman-based velocity estimator at each corner. The stability of the proposed time-varying estimator is investigated and its performance is examined experimentally in several tests and on different road surface frictions. Road experiments and simulation results show the accuracy and robustness of the proposed approach in estimating longitudinal speed for ground vehicles.  相似文献   

3.
Vehicle stability and active safety control depend heavily on tyre forces available on each wheel of a vehicle. Since tyre forces are strongly affected by the tyre–road friction coefficient, it is crucial to optimise the use of the adhesion limits of the tyres. This study presents a hybrid method to identify the road friction limitation; it contributes significantly to active vehicle safety. A hybrid estimator is developed based on the three degrees-of-freedom vehicle model, which considers longitudinal, lateral and yaw motions. The proposed hybrid estimator includes two sub-estimators: one is the vehicle state information estimator using the unscented Kalman filter and another is the integrated road friction estimator. By connecting two sub-estimators simultaneously, the proposed algorithm can effectively estimate the road friction coefficient. The performance of the proposed estimation algorithm is validated in CarSim/Matlab co-simulation environment under three different road conditions (high-μ, low-μ and mixed-μ). Simulation results show that the proposed estimator can assess vehicle states and road friction coefficient with good accuracy.  相似文献   

4.
车辆结构参数和道路环境信息的实时准确获取是提高智能汽车运动控制性能的重要因素之一,而车辆质量与道路坡度信息是多种汽车控制系统的必要信息,因此质量与坡度在线估计的研究一直受到关注。针对车辆质量与道路坡度的联合估计问题,提出了一种基于交互多模型的质量与坡度融合估计方法。首先,设定了适宜进行质量精确估计的工况条件,据此提出了基于模糊规则的质量估计置信度因子计算算法,进而设计了基于置信度因子的递推最小二乘车辆质量估计算法,以实现质量的在线估计。然后,以车辆纵向动力学模型为基础,建立了运动学和动力学2种坡度估计模型,并设计了基于运动学模型的线性卡尔曼滤波坡度观测器,基于电子稳定性程序ESP的纵向加速度信息实现坡度估计,设计了基于动力学模型的无迹卡尔曼滤波坡度观测器,基于ESP和发动机管理系统EMS的力信息实现坡度估计。运动学模型未考虑车辆姿态信息,坡度估算结果与实际值有偏差;动力学模型对模型精度要求高,算法稳定性差,为充分发挥2种方法优势实现坡度的精确估计,采用交互多模型算法实现了2种坡度估计方法的加权融合。最后,对所设计的算法进行了实车试验验证。结果表明:所设计的质量与坡度估算算法具有较好的实时性和准确性,适合智能汽车运动控制的应用需求。  相似文献   

5.
当路面附着情况和车辆行驶状态不断变化时,基于恒定侧偏刚度的模型预测控制(MPC)不能考虑轮胎非线性特性的影响,难以保证车辆轨迹跟踪的适应性。为此,提出一种考虑轮胎侧向力计算误差的自适应模型预测控制(AMPC),以提高智能汽车在不确定工况下的轨迹跟踪性能。分析了路面附着系数和垂向载荷对轮胎侧向力的影响,基于平方根容积卡尔曼滤波(SCKF)算法,设计了利用侧向加速度和横摆角速度作为测量变量的前后轮胎侧向力估计器。利用轮胎侧向力线性计算值与估计值的差值计算得到侧偏刚度修正因子,设计了前后轮胎侧偏刚度的自适应修正准则,进而提出了一种基于时变修正刚度的AMPC控制方法。基于CarSim与MATLAB/Simulink联合仿真和硬件在环测试平台,对AMPC控制的有效性和实时性进行了验证。研究结果表明:在不同的路面附着情况和车辆行驶状态下,AMPC控制都能够降低横向位置偏差和航向角偏差,有效提高车辆的轨迹跟踪精度,其控制效果明显优于基于恒定侧偏刚度的标准MPC控制。尤其在低附着工况下,标准MPC控制会因为线性轮胎力的计算误差过大而导致车辆在轨迹跟踪时严重失稳,而AMPC控制通过估计轮胎力修正侧偏刚度依然能够保证车辆稳定有效的跟踪参考轨迹。所提出的AMPC控制在保证控制精度的同时具有良好的实时性,对智能汽车控制系统的设计与优化具有重要参考价值。  相似文献   

6.
This publication presents a three-part road classification system that utilises the vehicle's onboard signals of two-wheeled vehicles. First, a curve estimator was developed to identify and classify road curves. In addition, the curve estimator continuously classifies the road curviness. Second, the road slope was evaluated to determine the hilliness of a given road. Third, a modular road profile estimator has been developed to classify the road profile according to ISO 8608, which utilises the vehicle's transfer functions. The road profile estimator continuously classifies the driven road. The proposed methods for the classification of curviness, hilliness, and road roughness have been validated with measurements. The road classification system enables the collection of vehicle-independent field data of two-wheeled vehicles. The road properties are part of the customer usage profiles which are essential to define vehicle design targets.  相似文献   

7.
Vehicle dynamics control (VDC) systems require information about system variables, which cannot be directly measured, e.g. the wheel slip or the vehicle side-slip angle. This paper presents a new concept for the vehicle state estimation under the assumption that the vehicle is equipped with the standard VDC sensors. It is proposed to utilise an unscented Kalman filter for estimation purposes, since it is based on a numerically efficient nonlinear stochastic estimation technique. A planar two-track model is combined with the empiric Magic Formula in order to describe the vehicle and tyre behaviour. Moreover, an advanced vertical tyre load calculation method is developed that additionally considers the vertical tyre stiffness and increases the estimation accuracy. Experimental tests show good accuracy and robustness of the designed vehicle state estimation concept.  相似文献   

8.
This paper describes a design of a real-time conversion system of wheel linear accelerations into tire lateral forces. Though the tire lateral forces are important elements for analyzing vehicle dynamic control performances, they cannot be easily measured in real-time owing to the non-linearities of tire dynamics, friction, and slippage on road. In this paper, we propose a practical direct method using wheel linear accelerations in order to estimate tire lateral forces transmitted into the vehicle in real-time. A simplified vehicle model based on force-acceleration analysis is proposed to assure the real-time performance. The acceleration values are obtained using three-axis accelerometers attached on each wheel location. For conditioning and rectifying the acceleration signals, a signal transducer is designed using a digital filter. And in order to investigate the feasibility and real-time performance, a prototype of signal transducer is fabricated using a digital signal processor. The experimental results and performance are validated with the road test results using six-component wheel force transducers.  相似文献   

9.
为了获得实时、准确的路面附着系数,进一步提高观测路面附着系数算法的精度和收敛速度,结合非线性车辆动力学模型和轮胎力修正模型,搭建分布式驱动电动汽车联合仿真平台,提出一种基于自适应衰减无迹卡尔曼滤波的路面附着系数观测算法。该算法设计与各轮对应的路面附着系数观测器,应用协方差匹配判据对观测器发散趋势进行判别,设计自适应加权系数修正预测协方差,以增强新近观测数据的利用率;同时采用次优Sage-Husa噪声估计器对未知的系统过程噪声进行估计,抑制观测器的记忆存储长度,调整过程噪声和测量噪声的均值与协方差,提高观测器的跟踪能力。利用分布式驱动电动汽车分别进行高、低附着路面和对开路面直线制动试验,并将自适应衰减无迹卡尔曼滤波路面附着系数观测器的观测结果与无迹卡尔曼滤波观测值、参考路面附着系数进行比较和分析。结果表明:高附着路面条件下,所设计的算法估计误差可控制在0.64%以内;低附着路面条件下,所设计的算法估计误差可控制在1.03%以内;对开路面条件下估计误差可控制在1.26%以内;自适应衰减无迹卡尔曼滤波算法相比无迹卡尔曼滤波算法响应速率更快,具有更高的估计精度和较强的自适应能力,估计结果整体上维持稳定,能够适应各种不同路面的估计。  相似文献   

10.
This paper qualitatively and quantitatively reviews and compares three typical tyre–road friction coefficient estimation methods, which are the slip slope method, individual tyre force estimation method and extended Kalman filter method, and then presents a new cost-effective tyre–road friction coefficient estimation method. Based on the qualitative analysis and the numerical comparisons, it is found that all of the three typical methods can successfully estimate the tyre force and friction coefficient in most of the test conditions, but the estimation performance is compromised for some of the methods during different simulation scenarios. In addition, all of these three methods need global positioning system (GPS) to measure the absolute velocity of a vehicle. To overcome the above-mentioned problem, a novel cost-effective estimation method is proposed in this paper. This method requires only the inputs of wheel angular velocity, traction/brake torque and longitudinal acceleration, which are all easy to be measured using available sensors installed in passenger vehicles. By using this method, the vehicle absolute velocity and slip ratio can be estimated by an improved nonlinear observer without using GPS, and the friction force and tyre–road friction coefficient can be obtained from the estimated vehicle velocity and slip ratio. Simulations are used to validate the effectiveness of the proposed estimation method.  相似文献   

11.
Knowledge of vehicle dynamics data is important for vehicle control systems that aim to enhance vehicle handling and passenger safety. This study introduces observers that estimate lateral load transfer and wheel–ground contact normal forces, commonly known as vertical forces. The proposed method is based on the dynamic response of a vehicle instrumented with cheap and currently available standard sensors. The estimation process is separated into three blocks: the first block serves to identify the vehicle’s mass, the second block contains a linear observer whose main role is to estimate the roll angle and the one-side lateral transfer load, while in the third block we compare linear and nonlinear models for the estimation of four wheel vertical forces. The different observers are based on a prediction/estimation filter. The performance of this concept is tested and compared with real experimental data acquired using the INRETS-MA (Institut National de Recherche sur les Transports et leur Sécurité – Département Mécanismes d’Accidents) Laboratory car. Experimental results demonstrate the ability of this approach to provide accurate estimation, thus showing its potential as a practical low-cost solution for calculating normal forces.  相似文献   

12.
ABSTRACT

The road roughness acts as a disturbance input to the vehicle dynamics, and causes undesirable vibrations associated with the ride and handing characteristics. Furthermore, the accurate measurement of road roughness plays a key role in better understanding a vehicle dynamic behaviour and active suspension control systems. However, the direct measurement by laser profilometer or other distance sensors are not trivial due to technical and economic issues. This study proposes a new road roughness estimation method by using the discrete Kalman filter with unknown input (DKF-UI). This algorithm is built on a quarter-car model and uses the measurements of the wheel stroke (suspension deflection), and the acceleration of the sprung mass and unsprung mass. The estimation results are compared to the measurements by laser profilometer in-vehicle test.  相似文献   

13.
结合卡尔曼滤波器的车辆主动悬架轴距预瞄控制研究   总被引:8,自引:2,他引:8  
喻凡  郭孔辉 《汽车工程》1999,21(2):72-80
利用轴距预瞄信息,即前后轮路面输入之关系,同时结合卡尔曼滤波器作为状态估计器,本文提出了一种算法用于车辆悬架控制律的设计,根据模拟结果,研究了算法的可行性,分析了卡尔曼滤波器对状态变量的估计精度,以及轴距预瞄控制对进一步改进车辆性能的潜力。  相似文献   

14.
A sliding-mode observer is designed to estimate the vehicle velocity with the measured vehicle acceleration, the wheel speeds and the braking torques. Based on the Burckhardt tyre model, the extended Kalman filter is designed to estimate the parameters of the Burckhardt model with the estimated vehicle velocity, the measured wheel speeds and the vehicle acceleration. According to the estimated parameters of the Burckhardt tyre model, the tyre/road friction coefficients and the optimal slip ratios are calculated. A vehicle adaptive sliding-mode control (SMC) algorithm is presented with the estimated vehicle velocity, the tyre/road friction coefficients and the optimal slip ratios. And the adjustment method of the sliding-mode gain factors is discussed. Based on the adaptive SMC algorithm, a vehicle's antilock braking system (ABS) control system model is built with the Simulink Toolbox. Under the single-road condition as well as the different road conditions, the performance of the vehicle ABS system is simulated with the vehicle velocity observer, the tyre/road friction coefficient estimator and the adaptive SMC algorithm. The results indicate that the estimated errors of the vehicle velocity and the tyre/road friction coefficients are acceptable and the vehicle ABS adaptive SMC algorithm is effective. So the proposed adaptive SMC algorithm can be used to control the vehicle ABS without the information of the vehicle velocity and the road conditions.  相似文献   

15.
This paper demonstrates a method to estimate the vehicle states sideslip, yaw rate, and heading using GPS and yaw rate gyroscope measurements in a model-based estimator. The model-based estimator using GPS measurements provides accurate and observable estimates of sideslip, yaw rate, and heading even if the vehicle model is in neutral steer or if the gyro fails. This method also reduces estimation errors introduced by gyroscope errors such as the gyro bias and gyro scale factor. The GPS and Inertial Navigation System measurements are combined using a Kalman filter to generate estimates of the vehicle states. The residuals of the Kalman filter provide insight to determine if the estimator model is correct and therefore providing accurate state estimates. Additionally, a method to predict the estimation error due to errors in the estimator model is presented. The algorithms are tested in simulation with a correct and incorrect model as well as with sensor errors. Finally, the estimation scheme is tested with experimental data using a 2000 Chevrolet Blazer to further validate the algorithms.  相似文献   

16.
In this article, a new approach to estimate the vehicle tyre forces, tyre–road maximum friction coefficient, and slip slope is presented. Contrary to the majority of the previous work on this subject, a new tyre model for the estimation of the tyre–road interface characterisation is proposed. First, the tyre model is built and compared with those of Pacejka, Dugoff, and one other tyre model. Then, based on a vehicle model that uses four degrees of freedom, an extended Kalman filter (EKF) method is designed to estimate the vehicle motion and tyre forces. The shortcomings of force estimation are discussed in this article. Based on the proposed tyre model and the improved force measurements, another EKF is implemented to estimate the tyre model parameters, including the maximum friction coefficient, slip slope, etc. The tyre forces are accurately obtained simultaneously. Finally, very promising results have been achieved for pure acceleration/braking for varying road conditions, both in pure steering and combined manoeuvre simulations.  相似文献   

17.
基于多信息融合的全轮独立电驱动车辆车速估计   总被引:2,自引:0,他引:2  
褚文博  李深  江青云  刘力  罗禹贡 《汽车工程》2011,33(11):962-966
鉴于用非驱动轮轮速信号来估计车速的方法已不适用于没有非驱动轮的全轮独立电驱动车辆,提出了借融合车载普通传感器信号和驱动电机反馈信号等多信息源,并基于稳态工况下的轮速信号卡尔曼滤波和瞬态工况下的加速度积分的全轮驱动车辆车速估计方法.通过实车试验对该方法的有效性、适用性和精度进行了验证.  相似文献   

18.
Dual extended Kalman filter for vehicle state and parameter estimation   总被引:2,自引:0,他引:2  
The article demonstrates the implementation of a model-based vehicle estimator, which can be used for combined estimation of vehicle states and parameters. The estimator is realised using the dual extended Kalman filter (DEKF) technique, which makes use of two Kalman filters running in parallel, thus 'splitting' the state and parameter estimation problems. Note that the two problems cannot be entirely separated due to their inherent interdependencies. This technique provides several advantages, such as the possibility to switch off the parameter estimator, once a sufficiently good set of estimates has been obtained. The estimator is based on a four-wheel vehicle model with four degrees of freedom, which accommodates the dominant modes only, and is designed to make use of several interchangeable tyre models. The paper demonstrates the appropriateness of the DEKF. Results to date indicate that this is an effective approach, which is considered to be of potential benefit to the automotive industry.  相似文献   

19.
20.
A precise estimation of vehicle velocities can be valuable for improving the performance of the vehicle dynamics control (VDC) system and this estimation relies heavily upon the accuracy of longitudinal and lateral tyre force calculation governed by the prediction of normal tyre forces. This paper presents a computational method based on the unscented Kalman filter (UKF) method to estimate both longitudinal and lateral velocities and develops a novel quasi-stationary method to predict normal tyre forces of heavy trucks on a sloping road. The vehicle dynamic model is constructed with a planar dynamic model combined with the Pacejka tyre model. The novel quasi-stationary method for predicting normal tyre forces is able to characterise the typical chassis configuration of the heavy trucks. The validation is conducted through comparing the predicted results with those simulated by the TruckSim and it has a good agreement between these results without compromising the convergence speed and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号