首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
制动力矩是气压盘式制动器的关键性能指标,直接关系到车辆的制动效果和可靠性。文章结合多年气压盘式制动器技术开发和应用经验,从技术设计角度出发,通过理论计算和有限元分析,对制动力矩的主要影响因素进行归纳分析;同时,兼顾制动块偏磨、杠杆行程等其它性能指标,为制动力矩的提升提供了方向,可为气压盘式制动器的新产品开发和现有产品的技术改进提供借鉴。  相似文献   

2.
介绍气制动大客车制动力以及制动力矩的计算方式,并通过实际气制动客车制动力矩的计算和数据对比.为今后在客车制动系统设计当中,提供有效理论依据.  相似文献   

3.
气压盘式制动器在大客车上的应用   总被引:2,自引:0,他引:2  
与传统的鼓式制动器相比,气压盘式制动器无论在性能还是可靠性方面都表现出极大的优势。通过简要介绍气压盘式制动器的结构、特点及应用状况,提出了一种气压盘式制动器制动力矩的计算方法,并对气压盘式制动器在应用设计中应注意的一些问题作了初步的探讨。  相似文献   

4.
介绍了制动系统软件包的研制方法,包括计算模块、数据库模块和人机界面模块,用VB编程语言形成一个集成化的制动系统设计与计算系统,可用于各种车辆特别是专用车辆制动系统的设计及验证。  相似文献   

5.
基于MATLAB/GUI开发了汽车制动系统设计与性能评价软件.软件分为4大模块:有比例阀(比例分配阀、差压比例阀、感载比例阀、加速度比例阀)汽车制动系统匹配计算与分析;无比例阀汽车制动系统匹配计算与分析;基于踏板力计算分析评价汽车制动稳定性;ECE制动法规要求以及曲线.以某轻型货车为例,进行了模拟计算并与Carsim仿真结果进行了对比,从而验证了该软件的可靠性与实用性.  相似文献   

6.
根据气压防抱死制动系统(ABS)的原理和结构设计了仿真模型流程图,建立了气压ABS的总体模型,并将其分为若干模块,分别设计建立了各仿真模块的模型,进而得到气压ABS仿真模型;重点介绍了装有ABS电磁阀气压制动系统模型的建立。  相似文献   

7.
为缩短重型越野汽车的制动响应时间,提高制动性能,设计了基于气压制动的电控制动系统(EBS)。依据目标车型的性能参数及EBS控制算法,以Matlab/Simulink为仿真平台,建立了目标车型的整车模型及控制算法模型。仿真研究了所设计的EBS系统在不同工况下的制动性能,并通过与常规ABS制动系统试验数据的对比,验证了系统设计的合理性。结果表明,所设计的EBS系统在减少制动响应时间和提高制动安全性方面具有明显的优势。  相似文献   

8.
根据某气压制动消防车的整车参数对整车制动力进行计算,对该车气压制动系统进行了设计。首先对前后轴制动器进行选型,再计算并校核制动力。综合考虑车辆的经济性及可靠性,最终选定合适的制动器;然后设计合理的储气筒容积并选型合适的空压机,以满足整车制动用气需求。对该消防车进行严格的制动性能测试及可靠性试验,证明该车制动器选型、储气筒容积设计及空压机选型均满足相关制动法规要求,选型设计合理。  相似文献   

9.
为提高半挂汽车列车主动安全性能,建立了一套半挂汽车列车主动气压制动控制系统。设计了一套能与半挂汽车列车传统气压制动系统兼容的主动气压制动执行机构,搭建了相应的硬件系统;建立了系统增、减压模型和电磁阀开关过程模型;利用实验数据,采用粒子群算法对模型参数进行了辨识;在此基础上,建立了基于模型的主动气压制动控制策略,并进行了测试验证。结果表明,提出的半挂汽车列车主动气压制动控制系统能实现精确的主动气压制动控制。  相似文献   

10.
商用车气压制动系统由于受本身结构的限制,制动响应时间长、制动系统的匹配困难一直是气压制动系统的短板。优化制动响应时间及制动系统匹配,提高商用车制动效能,从而提高整车制动的可靠性、平顺性、经济性都有一定的现实意义。本文根据商用车的结构特点,提出相关的优化方法。  相似文献   

11.
为了减小长期自动驾驶过程中制动性能下降带来的影响,提出了一种驾驶机器人车辆动态制动力矩补偿方法。首先建立了以车速和制动踏板力为输入,制动力矩为输出的驾驶机器人车辆制动性能离线自学习模型。然后考虑到驾驶机器人车辆长期自动驾驶导致离线自学习模型可靠性下降,建立了以车速和制动踏板力为输入,制动力矩为输出的扩展自回归在线辨识模型,并采用模糊变遗忘因子递推最小二乘法进行参数辨识。模糊变遗忘因子递推最小二乘法通过引入遗忘因子的方式,对数据施加时变加权系数,以避免出现数据增长导致的数据饱和现象。模糊变遗忘因子控制器以制动力矩辨识误差为输入,经模糊规则推理实时输出合适的遗忘因子进行参数辨识,能够有效均衡驾驶机器人车辆制动性能参数辨识的稳定性与收敛速度。驾驶机器人车辆自动驾驶过程中,根据当前车速与目标车速的大小计算出所需的制动力矩,加上反馈回来的制动力矩误差,并结合当前时刻的车速,利用制动性能离线自学习模型与机械腿逆向运动学模型实时计算出制动电机输出位移量,实现对驾驶机器人车辆制动力矩的在线补偿。仿真与试验结果表明:利用所提出的方法对车辆动态制动力矩进行辨识时,通过调节遗忘因子,辨识结果能够快速收敛且辨识误差较小。在此基础上,控制驾驶机器人车辆进行纵向车速跟踪时,能够有效减小制动性能下降造成的影响,保证控制车速跟踪误差在±1km·h-1之内。  相似文献   

12.
文章以某重型6x6越野汽车为依托,对气压制动系统及其工作原理进行详细说明。通过对该车型同步附着系数的分析确定,得到整车制动力分配系数,计算得到该车型利用附着系数与制动效率,校核了该车型的制动性能。  相似文献   

13.
文章提出了一种无人驾驶纯电动汽车制动扭矩分配控制方法。该方法首先根据动力电池、驱动电机状态以及整车状态计算驱动电机最大能量回收扭矩,并在此基础上进行需求制动扭矩分配;接下来创造性的将电机系统引入到制动控制系统中,充分考虑了液压制动系统由于温度(如热衰减)、部件机械特性以及环境等影响其输出制动力矩稳定性与准确性的因素,通过电机能量回收所产生的制动扭矩对此进行补偿,保证最终车辆制动过程中所产生的负向加速度与需求保持一致。最后通过实车实验,验证了该方法的可行性与可靠性。  相似文献   

14.
制动踏板作为驾驶员制动意图的执行元件,其行程和速度会改变气压制动系统的迟滞特性,而制动的迟滞效应又严重影响车辆的紧急制动性能。本文中根据多轴车辆气压制动系统构成和系统子部件的动力学建模分析,搭建了八轴车辆气压制动系统测试台架。采用快速响应的伺服驱动机构控制制动踏板的行程与速度,以实现对驾驶员不同紧急制动意图的准确模拟。试验结果表明,制动踏板行程越大,回路迟滞时间越长,且二者成二次曲线关系;制动踏板速度越快,回路迟滞时间越短。另外,通过系统辨识的方法,建立了考虑驾驶员制动意图的多轴车辆气压制动系统各回路的1阶迟滞模型。  相似文献   

15.
根据企业实际项目需要,通过面向对象的程序设计思想,利用Visual C++开发了汽车液压制动系统计算分析软件。介绍了该软件的功能结构、设计流程等。以某车制动系统设计计算为例,对软件的计算、分析、参数化建模能力进行了验证。该软件平台通过ACCESS数据库,储存了大量经验数据和制动法规来辅助用户设计开发,能够精确计算制动系统的20余项内容以全面分析整车制动性能。  相似文献   

16.
针对分布式电动汽车,在弯道制动过程中,既能保证车辆行驶稳定性又能兼顾制动能量回收,文章提出一种带稳定性加权系数的制动力矩分配方法,以驾驶员制动意图和路面附着情况为参考条件得出稳定性加权系数,将系数代入系统目标函数中,求出各车轮的最佳制动力矩,最后利用Carsim/Simulink联合仿真对分配算法进行验证,结果显示文章所提出的分配策略能使分布式电动车辆在转弯制动时,制动力矩分配既能满足稳定性需求又能使在当前工况下经济性能最大化。  相似文献   

17.
车辆气压制动系统具有响应快、可靠性高、廉价无污染等优点,因此载货车制动系统大多采用气压制动系统。整车中后桥制动回路大多采用差动式双继动阀(行车制动继  相似文献   

18.
为解决现有液力缓速器制动力矩仿真计算方案流场结构过度简化的问题,以VR120液力缓速器为研究对象,采用全流道计算方法开展了不同转速条件下的制动力矩计算。采用扣除机械摩擦阻力矩的台架试验方法实测了VR120不同转速条件下的制动力矩并与全流道式仿真计算结果进行对比,结果表明,相对误差在9.7%以内,证明了全流道制动力矩仿真计算方法的可靠性。  相似文献   

19.
针对某型脚踏式驻车制动机构不合格产品中出现的不能有效实现驻车力矩的保持与释放问题,文章从汽车驻车制动器的功能、工作原理与结构特点出发,针对其棘轮、棘爪等关键零部件进行力学分析以及几何参数设计计算。基于ADAMS仿真分析软件构建了驻车制动机构动力学分析模型,分析了拉伸弹簧关键部件参数的选取对制动机构制动性能与效果的影响,模拟了脚踏式驻车制动机构的制动与松开过程。通过优选参数下的机构运动学仿真分析获得棘轮、棘爪标记点的运动轨迹,并进行了10个周期内的制动机构性能可靠性分析。结论验证了所设计参数满足驻车制动性能,满足驻车力矩的保持与释放功能要求。  相似文献   

20.
面向智能车设计了一款并联式电子液压制动系统,并针对智能车在紧急制动时易失稳的问题,基于车辆制动时的载荷转移特性,提出一种制动力分配控制策略。根据车辆在制动时前、后轴载荷转移量调节前、后轴车轮制动力,并将此时前、后轴车轮制动力矩作为基准制动力矩,基于径向基神经网络和PID算法设计附加制动力矩控制器,以此调节各车轮的制动力。最后搭建模型并与PID控制进行了仿真对比,结果表明,在车辆紧急制动工况下,提出的附加制动力矩融合控制器可以有效缩短制动距离并显著提高车辆稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号