首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
无锡某泵站工程采用顶管法施工,顶管近距离跨越运营地铁隧道。为保证运营地铁隧道结构安全,施工前采用有限元分析软件PLAXIS 2D和PLAXIS 3D模拟施工过程,预测了顶管法施工对隧道变形的影响,同时在施工期开展了全过程的安全监测。基于模拟结果和实测数据对比分析,得出以下结论:隧道变形均满足规范中对隧道结构变形的控制要求;数值分析结果与实测结果变形规律基本一致,顶管施工引起下方地铁盾构隧道的竖向变形表现为隧道隆起,水平变形相对较小,隧道收敛表现为横向压缩、竖向拉伸;顶管穿越施工引起下方盾构隧道上浮和轮廓收敛变形,隧道最大变形均发生在顶部,施工过程中应加强对隧道顶部上浮和轮廓收敛的监测工作。顶管法施工上跨地铁运营隧道的影响结果可为类似工程安全控制提供一定参考。  相似文献   

2.
隧道收敛变形能够直观地反映出隧道结构的安全状况, 是影响地铁正常运营的重要因素。 依托南京扬子江大断面盾构隧道, 建立了单环管片精细化数值模型, 以现场接缝张开度的健康监测数据验证数值模型的准确性与可行性, 研究了纵缝张开与收敛变形的关系以及螺栓预紧力和管片拼装角度对收敛变形的影响。 研究结果表明: (1) 纵缝张开是隧道环向发生收敛变形的关键因素, 管片绕接缝处转动是收敛变形的主要形态; (2) 对于大变形情况 (>8‰D), 提高螺栓预紧力不建议成为控制收敛的主要手段; (3) 得到的 “纵缝张开-收敛变形” 拟合公式, 可用于近似估算圆砾及卵石全透水地层中不同拱腰收敛变形下的拱顶纵缝张开量。  相似文献   

3.
河道开挖工程施工会导致邻近的既有地铁隧道变形,在一定程度上还会对轨道交通线路的结构和运营安全产生影响。因此,如何控制土体开挖卸载过程中地铁隧道的上浮和变形是各方关注的重点。围绕河道开挖对下方既有区间隧道变形的影响展开研究,采用MIDAS有限元数值分析方法进行数值模拟,动态分析了不同开挖过程对下方隧道结构变形的影响及产生原因,有助于动态监控后期施工。结果表明:实时监测结果与计算数值二者变形特征基本一致,变化规律基本相同,河道开挖引起的隧道水平变形最大值为+1.92mm,竖向变形最大值为+4.03mm,均小于安全控制指标值,有效保证了区间隧道运营和结构安全。  相似文献   

4.
《黑龙江交通科技》2017,(12):165-167
介绍了国内首例在洞内针对已运营盾构隧道进行"微扰动"注浆加固治理收敛变形的案例,针对注浆后隧道的收敛变形进行分析对比。该技术的成功运用可供类似工程参考,为轨道结构盾构隧道安全运行提供保障。  相似文献   

5.
近年来,进入运营阶段的大直径水下盾构隧道越来越多,这些隧道在运营过程中逐渐出现渗漏水、错台、接缝张开等病害,分析结构变形趋势及养护措施至关重要。研究以扬州瘦西湖盾构隧道为例,通过为期一年的全线拱顶沉降、道面沉降、周边收敛的测量及病害的检查,给出了隧道内结构变形较大的位置和变形量,统计了隧道内病害的检查及养护情况,并以此为基础,编制出《瘦西湖隧道养护指导手册》,为保障隧道安全运营提供规范性的养护措施及合理建议。  相似文献   

6.
隧道漏水对地铁的运营、养护及维修危害较大。在堵漏施工过程中必须对轨道、管片进行监控量测,传统的人工监测无法实时掌握隧道结构的动态变化并满足信息化施工要求。因此,采用自动化监测系统进行既有线的变形监测具有重要现实意义。以“哈尔滨地铁1号线”为案例,分析介绍自动化监测技术在地铁隧道运营堵漏施工中的实际运用。  相似文献   

7.
邻铁桩基施工过程中的土体扰动极易对既有地铁隧道产生不利影响,隧道主体结构变形是桩基施工过程中主要监测对象。依托宁马(南京至马鞍山)高速公路油坊桥互通工程,基于隧道结构监控数据,分析桩基施工过程中隧道结构水平、沉降及收敛变形特征,研究桩基施工对隧道结构影响。结果表明:桩基施工距隧道结构越远,影响越小,间距超过14m,扰动影响可以忽略;邻铁桩基采用全套管灌注桩施工会对隧道结构产生侧向挤压作用,产生较大的水平及收敛变形;施工过程应重点监测隧道结构渗水及管片错台病害,并及时进行病害治理,研究可为同类工程施工提供参考。  相似文献   

8.
通过自动化检测设备对营运中地铁隧道变形[1]进行实时监测,可为复杂地质环境下邻近地铁的基坑施工提供指导依据,但对于整体沉降较大的地铁隧道,自动化设备所测得的沉降变形不能反映地铁实际沉降量。以某沿海城市软土地区邻近运营地铁的深基坑工程为实例,采用自动化监测方法和人工水准测量方法对地铁隧道沉降变形进行动态监测,实测分析发现自动化监测的地铁隧道沉降变形比人工水准测量方法得到的沉降变形普遍偏小。利用人工水准测量结果对自动化监测地铁隧道沉降变形进行修正,能较好的反映隧道的实际沉降变形。  相似文献   

9.
对于城市运营地铁线上方新建建筑物的工程,基坑开挖导致隧道受到卸载附加应力,严重的将影响隧道的安全。基于Mindlin解,借助Mathematica数学软件,首先计算矩形基坑坑底竖直卸载和坑壁水平卸载引起紧邻地铁隧道的附加应力值,进而分析隧道走向、隧道-基坑夹角、基坑开挖深度对隧道附加应力场的影响规律;最后以运营重庆地铁一号线七星岗地铁车站上方开挖罗宾森广场基坑为工程背景,计算了不规则形状基坑开挖作用下地铁隧道轴线上附加应力分布。本研究成果是进一步研究不规则形状基坑开挖导致隧道结构内力和变形的基础。  相似文献   

10.
外部工程作业时常引发轨道交通工程变形,对地铁结构、运营安全造成严重威胁。在与轨道交通位置有交叉的工程中,外部工程作业产生的不利影响尤为突出。然而,市政、水利等工程不可避免地存在与轨道交通交叉的部位,如何采取有效的控制手段以保证市政、水利等工程施工时下部地铁隧道的结构安全成为研究重点。以南京地铁3号线区间隧道上方河道整治拓宽工程为例,采取优化拓宽断面、河底格埂、预留核心土等措施,结合MADIS(有限元分析软件)和地铁保护监测数据进行论证,结果表明:项目实施期间有效控制了地铁隧道变形,可为类似轨道交通区间隧道上方工程的设计、施工提供参考。  相似文献   

11.
基坑工程位于地铁隧道之侧,基坑开挖卸荷导致地铁隧道衬砌产生位移,水平位移朝向基坑内侧,而竖向位移主要表现为隆起,地铁隧道衬砌竖向隆起量要大于水平位移;地铁隧道衬砌位移随着基坑开挖逐渐增大。地铁隧道离基坑越远且地铁隧道埋深越深,地铁衬砌竖向隆起量及水平位移就越小。以枫亭隧道明挖基坑为工程实例,采用地连墙+4道横撑+2道竖向支撑的支护方式、盆式开挖方法、合理的地连墙嵌固深度等方式来控制地铁隧道衬砌的变形,并以"地铁隧道结构的绝对竖向位移及水平位移要≤20 mm"为控制标准,对基坑开挖进行了数值模拟,结果显示控制措施能保证地铁隧道正常运营安全。  相似文献   

12.
以某临近地铁隧道的软土基坑工程为背景,考虑地下水渗流作用下,运用有限元方法动态模拟基坑开挖过程,分析基坑变形以及对临近地铁隧道的影响,并对不同施工方案进行优化分析。研究得出:基坑开挖对邻近地铁隧道影响主要体现在近端隧道的水平变形上,可将其作为施工中隧道变形控制及预警指标;提出的5项控制措施均能减小地铁隧道变形,其中减小开挖深度和坑外降水效果最为明显,结合实际情况进行组合分析,选取合适的施工控制方案;地铁隧道处于对变形严格要求的运营阶段时,需辅助其他控制措施,如分块开挖等。  相似文献   

13.
对砂性地层盾构吊出井所在区段地铁隧道进行隧道渗漏水、混凝土管片损伤、错台量、接缝张开量的调查和检测,并结合隧道收敛变形监测数据进行了吊出井段开挖回填的施工数值模拟。分析结果表明,吊出井段隧道病害主要是由于回填土在隧道该部位产生的侧向应力值太低,在上覆荷载作用下隧道产生较大收敛变形,引起拱顶管片内壁拉伸外壁受压,从而导致了隧道顶部纵向开裂和接缝张开等病害。  相似文献   

14.
新建明挖基坑上跨运营地铁隧道时,区间隧道会产生上浮变形,影响地铁运营安全。结合工程实例,采取双排桩围护+两道混凝土支撑、地层分区加固、基坑分区分层开挖等施工措施,经数值模拟分析及现场量测验证,施工结果满足既有隧道运营安全要求,可为类似工程提供借鉴。  相似文献   

15.
南京地铁隧道裂缝整治措施探讨   总被引:2,自引:0,他引:2  
隧道结构裂缝是地铁运营及养护过程中常见的病害之一。结合南京地铁隧道结构裂缝的整治经验,对隧道结构不同性质不同渗漏部位的渗水裂缝的施工处治方案进行探讨,为以后地铁隧道工程裂缝的整治工作提供一定的经验参考。  相似文献   

16.
新建北京某地铁盾构隧道下穿既有国家一级铁路干线,为此对盾构下穿铁路过程进行分析,预测施工引起的既有铁路路基扰动、轨道结构变形,在此基础上评价既有铁路结构是否安全,轨道是否满足运营要求。  相似文献   

17.
为了确保基坑近接既有地铁盾构隧道的结构安全和正常运营,在对盾构隧道纵向等效刚度模型研究的基础上,建立了隧道纵向变形曲率与螺栓承载状态和线路正常运行要求的公式.结合沈阳某深、大基坑近接既有地铁盾构隧道施工工程的实际情况,通过改变既有盾构隧道相对新建基坑的空间位置关系,进行了多工况三维数值模拟计算分析,得到了基于桩锚支护的基坑近接既有地铁盾构隧道施工的强、弱、无影响分区图,并通过现场的沉降实测结果等验证影响分区标准和控制技术的有效性.研究结果表明:盾构隧道纵向变形曲率半径是基坑近接盾构隧道施工中隧道结构安全和正常使用的关键指标,可将盾构隧道纵向变形曲率半径作为近接影响判断准则;在确定基坑近接既有盾构隧道施工工程的影响分区时,可将盾构隧道轨道线形受影响的临界状态及管片接头极限状态下隧道纵向变形曲率半径,分别作为强弱影响区和弱无影响区的划分阈值.  相似文献   

18.
基于此考虑,依托低山丘陵区某高速公路隧道工程为背景,结合现场测试坡面位移、隧道洞口围岩收敛、拱顶位移等测试数据,探索了低山丘陵区公路隧道围岩变形特性。同时,借助星野法与多项式法,对隧道围岩变形进行预测。研究结果表明:隧道上方坡面测点竖向位移及侧向变形相对较小,累积测试3个月小于10 mm,围岩收敛与拱顶位移控制在5 mm以内;结合实测数据预测5年内围岩收敛与拱顶位移控制在6 mm以内,建设期变形约占预测总变形83%以上。测试及预测分析表明围岩整体变形较小,满足长期安全运营需求。  相似文献   

19.
隧道施工过程中围岩变形引起衬砌结构的不均匀沉降,威胁着隧道的安全运行。为全面分析地铁隧道衬砌特性,采用有限元法,通过大型有限元软件 ANSYS,结合荷载结构法,对地铁明挖隧道进行仿真分析。同时,对明挖隧道衬砌结构的设计进行力学分析,通过对衬砌结构变形图、剪力图、弯矩图、轴力图的分析以及对变形、衬砌结构混凝土的验算等,评价结构安全性,并提出相应的构造处理措施。  相似文献   

20.
为改变居住环境和生态环境,往往公园等大型公共用地的规划是动态变化的,例如公园内假山等景观的建造或拆除。对于地铁盾构隧道下穿该区域来说,运营阶段上覆荷载的改变,会使得结构横断面变形过大。后续的建设规划同地铁盾构隧道结构安全性之间存在矛盾。为解决这一矛盾,需要在地铁盾构隧道建设期进行地基加固。通过工程调研,分析了上海地铁盾构隧道在上覆荷载发生变化时,横断面变形现状;采用ABAQUS三维有限元,选取某典型软土地区深厚淤泥质土层断面,研究了盾构隧道下穿公园区域内假山建造和穿越土层性质对地基加固宽度的影响。结果表明:地基加固需分段考虑且山体高度不能超过3.5 m。隧道全断面穿越淤泥土层,山体高度小于3.5 m时,拱腰两侧加固3 m较为合适;穿越淤泥质粉细砂层,该宽度可减小至1 m;穿越粉质黏土层,拱腰两侧可无加固宽度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号