首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
介绍了洛湛线长塘埠湘江特大桥深水钢管桩施工平台的设计与施工情况。针对桥位河床无覆盖层、岩面起伏大、弱风化灰岩裸露的特点,设计了适合群桩深水基础施工用的水上钢管桩施工平台,成功解决了无覆盖层深水钢管桩施工平台"生根"的技术难题。  相似文献   

2.
为了解决亚临界区圆形断面细长结构涡激共振抗风设计参数取值不明确的问题,针对土木工程领域小直径圆形细长结构在亚临界区的涡激共振现象,对其涡激共振耦合效应进行了研究,获得其抗风设计的主要气动力参数。采用弹性悬挂节断模型风洞试验,模型两侧采用斜置上下不等刚度的弹簧提供三自由度的振动模型,试验风速对应的雷诺数区位于亚临界雷诺数区,分别测试风速增大和减小2种状态下模型的涡激共振,试验采用激光位移计和压力扫描阀同步测试模型振动位移和表面风压,通过分析位移和风压之间的关系,揭示涡激共振发生的耦合状态,并基于涡激共振抗风设计的要求,给出涡激共振锁定区间、气动力系数等抗风设计参数。结果表明:风速增大和减小2种状态下,涡激共振的耦合状态不同,风速增大过程中锁定区间更长;在锁定区间内存在强耦合和弱耦合2种机理的耦合状态,强耦合状态下的升力系数标准差和平均阻力系数值更大,旋涡脱落频率更强,气动力和流场的波动也更强;基于此,建议在对亚临界区的圆形断面结构进行涡激共振设计时,锁定区间为1.0~1.3倍起振风速,其中1.0~1.1倍起振风速范围内按照强耦合状态设计并考虑由耦合效应引起的气动力增强,1.1~1.3倍起振风速范围内按照弱耦合状态设计。  相似文献   

3.
为了研究大形斜拉桥圆柱形桥塔的涡激共振特性,并且对其进行有效的控制,通过分析大形斜拉桥圆柱型桥塔的边界条件特点,建立桥塔计算模型,基于此模型分析了桥塔的固有特性;由风致涡激振动理论及有关空气动力学原理确定漩涡发放频率以及升力幅值;考虑桥塔的形状结构特点以及发生共振时的频率锁定现象确定锁定区域;提出了5个控制桥塔涡激共振的方案,理论分析和数值计算结果表明:方案5——改变锁定区域结构形式,不仅能够使桥塔避免或减弱涡激共振,与其他4个方案相比,该方案在造价和施工方面具有明显的优势,同时增加附属结构不会影响桥梁其他的相关结构,因此确定方案5——改变锁定区域结构形式为最佳控制方案。  相似文献   

4.
针对串列双矩形断面涡激振动气动干扰问题,在均匀流场下,分别对不同间距比D/B、不同阻尼比条件下上、下游矩形断面涡激振动气动干扰效应进行了风洞试验研究,并将上、下游矩形断面涡激振动锁定区间、涡激共振振幅与单矩形断面进行了对比。结果表明:串列双矩形断面竖向涡激振动锁定区间、上游矩形断面扭转涡激振动锁定区间不因上、下游矩形断面间距比及阻尼比的影响而改变,下游矩形断面扭转涡激振动锁定区间随上、下游矩形断面间距比的变化而略有变化;上、下游矩形断面净间距和阻尼比对上、下游矩形断面竖向涡激及扭转涡激共振振幅有影响;对于上游矩形断面竖向和扭转涡激振动,D/B=0.5时干扰效应达到最大,D/B≥4时气动干扰效应可以忽略;而对于下游矩形断面的竖向和扭转涡激振动,D/B=0.5时干扰效应达到最大,D/B≥7时仍存在气动干扰效应,且表现为抑制作用。  相似文献   

5.
为保证已建桥梁发生涡激振动后桥梁结构的安全以及桥上行车和行人安全,提出综合考虑人员舒适性、结构受力和停车线形三方面的大跨度钢-混结合梁悬索桥涡激振动控制指标体系。该体系包含9项指标,分别为驾乘人员舒适度、驾乘人员晕动症、行人舒适度(狄克曼指标)、加劲梁强度、加劲梁应力、加劲梁挠度、桥面纵坡、竖曲线半径和停车视距。以武汉鹦鹉洲长江大桥为背景,分别计算了“限速”和“封桥”2个交通管制措施下9项指标对应的涡激振动振幅限值。在此基础上,将9项指标对应的涡激振动振幅限值的最小值作为涡激振动限值建议取值。结果表明:当该桥发生低阶竖弯涡激振动(VS1、VAS1)时,涡激振动的控制因素为加劲梁挠度指标;当大桥发生VAS2模态的竖弯涡激振动时,涡激振动由驾乘人员晕动症指标和行人舒适度指标共同控制;当大桥发生高阶竖弯涡激振动(VAS3、VAS4)时,涡激振动由行人舒适度指标控制。涡激振动控制指标体系及限值标准的计算框架可适用于不同桥型涡激振动限值的计算。  相似文献   

6.
《公路》2015,(7)
为了分析组合滑动边界下悬浮隧道锚索在均匀流作用时涡激振动的稳定性问题,建立了锚索的涡激振动方程并用伽辽金法对其进行简化,运用Lyapunov指数法判别了锚索涡激振动的稳定性,同时分析了锚索弯曲刚度、跨度、均匀流速和涡激频率对锚索涡激振动稳定性的影响。研究结果表明,随着均匀流速和锚索跨度的增加,锚索逐渐从稳定的状态转变到不稳定的状态;涡激振动下锚索是否会失稳不仅取决于均匀流速的大小,而且还取决于涡激频率和锚索固有频率之间的关系;当涡激频率与锚索一阶固有频率接近时,会发生涡激共振现象,锚索最容易失稳。  相似文献   

7.
为了研究某实桥变截面圆灯柱发生的风致二阶振动现象,采用多段薄壁空心铝管焊接并覆盖泡沫管和柔性PVC薄膜的方法,设计制作了满足相似比要求的变截面灯柱气弹模型,解决了低质量比、低阻尼比变截面细长结构风洞试验不便模拟的问题。通过风洞试验,采用非接触式视频测量位移系统和眼镜蛇探针测试了不同风速下灯柱位移响应和尾流风速,重现了灯柱的二阶振动现象,通过分析确定其为涡激振动;采用傅里叶变换和小波分析研究了变截面灯柱的涡脱频率和涡激振动时频特性;开展了不同焊缝位置对灯柱涡激振动影响研究,分析了3种不同螺旋线布置方式对灯柱涡激振动的抑制效果。研究结果表明:灯柱在涡激振动锁定区内发生单一模态的涡激振动,运动轨迹为清晰的椭圆形,而在锁定区外发生多模态振动;变截面灯柱中部存在一定长度的控制区域,当中部控制区域涡脱频率接近结构固有频率时即发生涡激振动锁定现象,当中部控制区域脱离锁定频率,此时圆柱的涡激振动响应迅速降低;灯柱涡激振动响应受焊缝的位置影响显著,不同的焊缝位置可能抑制或者增强涡激振动;8 cm螺距双螺旋线能够有效控制灯柱模型涡激振动响应。  相似文献   

8.
现代大跨桥梁跨度更大、结构更轻柔、自振频率较低且密集,在较低风速下主梁易发生涡激振动现象。涡激振动是一种带有自激、自限特性的非线性振动,影响涡激振动响应因素较多如雷诺数效应、紊流特性及主梁断面形式等。本文介绍了近期大跨度桥梁主梁涡激振动影响因素研究进展,为抗风设计及抑振措施提供参考。  相似文献   

9.
代希华  鲜荣 《公路》2012,(6):14-21
现代大跨桥梁跨度更大、结构更轻柔、自振频率较低且密集,在较低风速下主梁易发生涡激振动现象。涡激振动是一种带有自激、自限特性的非线性振动,影响涡激振动响应的因素较多如雷诺数效应、紊流特性及主梁断面形式等。介绍了近期大跨度桥梁主梁涡激振动影响因素的研究进展,为抗风设计及抑振措施提供参考。  相似文献   

10.
主塔的风致振动控制   总被引:1,自引:0,他引:1  
刘健新  鲍卫刚 《公路》2003,(2):39-42
针对高耸的主塔施工架设期和成桥之后都可能出现的驰振和涡激共振问题,介绍近年来日本在修建大跨度悬索桥和斜拉桥主塔时的振动控制措施以及涡激共振反应的推算方法和允许振幅。  相似文献   

11.
跨越大江大河经常采用特大桥型式,桥梁基础大且处于复杂的环境中。以清云高速公路西江特大桥云浮侧主墩承台施工为依托进行分析讨论,摸索出了一种在斜河床面上组织大型承台施工的方法。相比传统的钢板桩围堰结构,提出了采用钢管桩挡土、设置强圈梁和内撑系统,有效克服了斜河床面产生的不均衡土压力,保证了围堰施工安全,可为类似项目提供参考依据。  相似文献   

12.
为从监测大数据中提取影响桥梁涡激振动的特征参数,及时预测涡激振动,以某跨海大桥为背景,对该桥2013~2015年的涡激振动监测数据进行梳理,分析风参数以及能量集中系数等结构振动响应因素在涡激振动中的特异性,根据涡激振动特征参数建立动态监控模型,并应用于该桥中。结果表明:涡激振动主要发生在顺风向平均风速为4~13m/s低风速以及300°~330°、120°~150°风向角间;竖向平均风速、风攻角、湍流度、阵风因子均不宜作为涡激振动预测分析参数;能量集中系数与加速度均方根值可作为桥梁是否发生涡激振动的进一步判断条件;涡激振动动态监控模型可及时预测涡激振动,且实际应用效果较好。  相似文献   

13.
半开口式分离双箱梁流线形断面是大跨桥梁较为常见的一种断面形式;然而,既有研究结果表明:半开口式分离双箱梁容易发生涡激共振;尽管涡激共振不会导致桥梁直接损毁,但是由于其起振风速低,发生频繁,容易造成结构疲劳损伤,并严重影响车辆和行人的舒适性。因此,亟需对该种断面形式的涡激共振的激振机理开展深入研究,以便寻找合理的减振/抑振措施。该文以广东佛山同济大桥主桥为工程背景,开展半开口式分离双箱梁节段模型涡激共振风洞试验,采用扫描阀测压研究了模型表面风压分布规律;通过数值积分方法计算了模型三分力系数时程曲线;进一步对三分力系数进行频谱分析,发现当模型处于+3°攻角时,升力系数具有显著的周期性;当升力系数的卓越频率与结构频率接近时发生共振现象,从而导致开口式分离式双箱梁发生涡激共振。  相似文献   

14.
为了研究大跨度斜拉桥超长拉索在不同流场特性下的高阶多模态涡激振动问题,以牛顿定律为基础,建立了考虑张力变化以及垂度效应的拉索结构振子方程,引入改进的Van Der Pol式尾流振子模型,以加速度耦合两非线性振子,提出了一种简便的拉索涡激振动流固耦合预报模型;采用二阶中心差分法,对两振子方程在空间域和时间域进行离散迭代求解,编制了拉索涡激振动的MATLAB计算程序,并验证了其可靠性。该方法为研究拉索涡激振动提供了一种新思路,可解决风洞试验和数值软件(CFD)不便模拟大长细比拉索结构的问题。基于提出的预报模型,以1根330 m超长拉索为研究对象,分析了拉索多模态涡激振动特性,探讨了不同流场特性对拉索涡激振动的影响。研究结果表明:均匀流作用下,拉索发生涡激锁定现象,以单一模态发生振动,随着风速的增加,拉索涡激锁定区间增大而最大振幅不发生改变;剪切流作用下,拉索发生多模态涡激振动,位移响应呈现"拍"的特点,振动频率分布在Strouhal涡脱频率范围内,存在2个或3个主导频率,主导频率全程参与振动,非主导频率间歇参与振动;拉索多模态涡激振动位移响应表现为行波-驻波并存的状态,随着风剖面指数的增加,涡激振动行波效应显著。  相似文献   

15.
边主梁断面(或Π形梁)是大跨度斜拉桥中常用的一种主梁断面形式,但容易产生涡激共振现象。涡激共振的典型特点之一是具有阻尼敏感性。文中针对在建的贵州望漠北盘江大桥的风致涡激振动进行了阻尼敏感性风洞试验研究。试验结果表明,该类桥梁涡激共振幅值对阻尼的设置十分敏感。因此,对于低风速下容易出现的涡激共振来说,采用多大的阻尼进行抗风设计十分关键。  相似文献   

16.
文章以大宁河特大桥为工程依托,建立了空间有限元模型,对该桥的颤振稳定特性、涡激振动和抖振响应进行分析与计算,得到该桥的颤振临界风速、涡振锁定风速、涡激共振振幅以及抖振位移。结果表明,拱桥成桥后刚度较大,抗风设计通常满足要求;施工中,通过制定具体的抗风措施,如设置抗风缆,能够保证抗风安全。  相似文献   

17.
湛江调顺跨海特大桥主桥为(147.5+296+147.5) m钢箱组合梁斜拉桥,门形桥塔高136.916 m,塔顶设高约13 m装饰性牌匾,牌匾左、右侧各设置9道竖向装饰立柱。立柱为气动外形较钝的柔性结构,为确保桥塔牌匾在运营期的抗风安全性,首先采用有限元法分析牌匾的动力特性,然后进行缩尺比1∶10的牌匾气动弹性模型风洞试验,分析"H"形和矩形断面立柱在不同风偏角下的涡激振动和驰振性能。结果表明:"H"形断面立柱振动频率低,在常遇风速下发生了明显的涡激振动,立柱底部应力幅大,会影响牌匾抗疲劳性能;2种断面立柱均未发生驰振,与"H"形断面立柱相比,矩形断面立柱振动频率明显提高,在试验风速内虽然发生了涡激振动,但应力幅小,满足抗疲劳要求;优化后的矩形断面宽度由中部0.24 m渐变到端部0.35 m,一阶侧弯涡激振动起振风速提高至37.51 m/s,抗风安全性大幅提高,桥塔牌匾竖向装饰立柱采用优化后的矩形断面。  相似文献   

18.
圆形斜拉索长细比大、阻尼及刚度小,因而其经常发生风致振动,尤其是涡激振动。涡激振动是一种限幅振动,其发生风速较低,因而斜拉索经常发生涡激振动现象,为此提出一种被动自吸吹气流动控制措施来抑制斜拉索涡激振动。通过节段模型气弹试验得到,被动吸吹气控制方法在套环间距适当下使得斜拉索涡激振动区间变窄,甚至可以完全抑制其发生涡激振动。通过分析斜拉索节段模型表面压力分布,得到被动自吸吹气能大幅度降低压力脉动值和脉动风荷载;且模型背风面的平均压力值的平台区也有所提升,表明平均阻力也有所减小。频谱分析表明:此控制方法改变了旋涡脱落模式及脱落强度。最后由尾流速度剖面可得,被动吸吹气流动控制方法缩小了模型尾流区宽度,尾流中的速度脉动也极大降低。折算风速为5.99时,对尾流速度时程做频谱分析可得,吸吹气控制方法能抑制住无控圆柱模型尾流中周期性交替脱落的旋涡。套环控制方法应用于三维柔性索性索模型上,能极大地降低柔性斜拉索的前三阶涡激振动幅值,同时发现套环间距越小,控制效果越强。  相似文献   

19.
介绍了怀阳高速西江特大桥在西江流域季节性强落差水文情况、浅覆盖层裸岩复杂环境下,栈桥平台的稳定性及抗洪能力等进行设计。最后介绍栈桥搭设的关键控制施工技术,包括板凳桩的成型下放、锚固桩的施工及承重梁面板的搭设。  相似文献   

20.
为准确预测桥梁涡激振动特征,基于结构-尾流振子耦合模型涡激振动预测方法,分析其动力方程及近似解,针对目前结构-尾流振子耦合模型中较难确定的模型参数(质量参数M、流场“stall”效应参数γ、结构对尾流作用的耦合项参数A和范德珀尔参数ε),提出了基于涡激振动风速~振幅曲线的模型参数识别方法。开展某主梁节段模型风洞试验,依据其实测涡振曲线,采用该方法识别模型参数,并预测不同阻尼比的桥梁涡激振动特征。结果表明:近似解精度与ε相关,ε越小,精度越高;ε越小,提出的模型参数识别方法越能准确识别模型参数;基于风洞试验实测涡激振动风速~振幅曲线识别的结构-尾流振子耦合模型可有效地预测桥梁涡激振动特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号