首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
分别对天然河砂和机制砂配制的C50混凝土进行强度试验,分析2种不同混凝土强度离散差异原因,设置4组不同配比的机制砂混凝土,进行力学性能试验,研究砂种类、石粉含量、矿物掺合料对混凝土立方体抗压强度、轴心抗压强度的影响程度.试验结果表明:机制砂配制的C50混凝土抗压强度离散性大于天然砂;石灰岩机制砂混凝土各龄期的轴心抗压强度值均小于原状机制砂混凝土及水洗机制砂;随着石粉含量增加,混凝土立方体抗压强度值先增大后降低,即存在一个最佳石粉含量值使得混凝土强度值达到最大值;矿物掺合料可以提高混凝土的长期立方体抗压强度及轴心抗压强度.  相似文献   

2.
通过结合工程实际,配制不同强度机制砂混凝土,利用固定水灰比、固定坍落度、高水灰比和大坍落度等手段全面地探讨不同强度混凝土的最优砂率分布;在单位用水量相同,最优砂率时强度与水灰比相关性较好。  相似文献   

3.
研究了机制砂对混凝土的体积变形和力学性能的影响。结果表明:机制砂中石粉含量的增多增加了混凝土的早期开裂趋势,要加强早期养护;机制砂对于混凝土的收缩具有正负效应:当石粉含量较小时,负效应占主导,干缩率随石粉含量的增加而增大;当石粉含量超过一定值时,正效应占主导,干缩率随石粉含量的增加而减小。机制砂配制混凝土可以提高其强度,但需严格控制机制砂的石粉含量。  相似文献   

4.
利用机制砂部分或全部取代河砂作为细集料配制混凝土,通过开展混凝土力学性能和徐变试验,研究了混合砂中石粉含量对各组混凝土的抗压强度、抗折强度、弹性模量以及徐变度的影响。结果表明:混凝土强度、弹性模量均随着混合砂中石粉含量的增加先增大后减小,石粉含量为5%时,上述力学性能最优;混合砂中石粉含量在7%以内时,随着石粉含量的增加,混凝土徐变度随之增大。  相似文献   

5.
针对机制砂混凝土应用中出现的级配不良,结合重庆沿江高速工程实际,通过分析不同配合比下机制砂混凝土的工作性能、力学性能、耐久性能,提出改善措施。结果表明:机制砂混凝土的坍落度损失较大,粉煤灰对其有明显改善作用;机制砂级配不良时,抗压强度不能满足使用要求,需掺配河砂调整级配。提出机制砂质量不稳定等是机制砂在高性能混凝土中应用受到制约的主要原因,并提出推广机制砂在高性能混凝土中应用的建议。  相似文献   

6.
机制砂用作水泥混凝土细集料时,其与天然砂掺配比例及机制砂石粉含量对水泥混凝土力学性能有显著影响。通过不同机制砂掺量及不同石粉含量时水泥混凝土抗压强度、抗折强度及折压比的影响试验,分析了水泥混凝土强度随机制砂掺量及石粉含量的变化规律,对指导机制砂水泥混凝土应用具有借鉴意义。  相似文献   

7.
为了揭示机制砂不同因素对混凝土性能的影响规律并提高机制砂在混凝土施工过程中的利用水平,立足于三因素三水平正交试验,同时结合宏观性能测试和耐久性研究,分析混凝土配合比设计时机制砂石粉含量、泥含量以及砂率对混凝土性能的影响。结果表明:①混凝土中石粉含量对混凝土的强度影响最大,其次是砂率,再次是泥含量;②制备高强度混凝土的条件是石粉含量为12%、砂率为42%、泥含量为2.5%。冻融性研究表明:适量的石粉、泥含量、砂率可以优化硬化混凝土的孔结构和空隙率,有利于混凝土强度及抗冻性能的提高。  相似文献   

8.
为研究石灰岩机制砂中石粉的质量分数和亚甲蓝值对砂浆干缩、耐磨性能的影响,通过亚甲蓝试验对黏土与亚甲蓝值之间的关系进行回归分析,并配制不同石粉的质量分数和亚甲蓝值的机制砂水泥砂浆,对其进行干缩、磨耗试验。研究结果表明:石粉的质量分数为10%时砂浆耐磨性能最好,干缩率最小;亚甲蓝值越大,干缩率越大,耐磨性越差;砂浆干缩率与磨耗值呈正相关,工程应用中可以通过控制砂浆的干缩来提高其耐磨性能。  相似文献   

9.
利用正交设计安排试验,讨论了砂率(Sp)及拌和用水量(W)对碾压混凝土稠度(VC)的影响;利用二次正交回归分析建立了VC值与Sp及W关系的数学模型,并对所建模型的显著性进行了数学分析。  相似文献   

10.
无砂混凝土因其强度不如普通密级配混凝土,限制了它的使用,因此如何提高无砂混凝土的强度和疲劳寿命是其应用的关键。将一种新型的胶体作为改性剂掺加到无砂混凝土中,通过强度、干缩及疲劳试验,与普通无砂混凝土以及同水泥用量、同强度等级的两种普通混凝土对比,试验表明该胶体改性剂能较大幅度提高无砂混凝土强度,达到规范混凝土面层强度要求,同时具备良好的抗干缩性能,特别是拥有优异的抗疲劳性能,使无砂混凝土具有了良好的应用前景。  相似文献   

11.
烧结砖再生骨料混凝土力学性能受到的影响因素较多,通过混凝土抗压强度试验与劈裂抗拉强度试验,研究了水灰比、砂率、再生骨料掺量、再生骨料的强度处理方式4种因素对混凝土力学性能的影响。研究表明:再生骨料混凝土的劈裂抗拉强度随着水灰比的增大而降低,水灰比取0.75到0.80较为合适;在一定范围内,再生骨料混凝土抗压强度与劈裂抗拉强度随着砂率增大而降低,砂率取35%~40%为宜;对再生骨料混凝土强度要求较高时,利用烧结砖再生骨料替代天然骨料的比例应控制在30%以内;对烧结砖再生骨料用水泥浆进行包裹处理可有效提高骨料的性能。  相似文献   

12.
耐磨性是水泥混凝土路面的主要耐久性指标,它关系到路面的使用寿命。研究如何提高机制砂路面混凝土的耐磨性,使其能达到河砂混凝土的耐磨性能,己成为机制砂混凝土路面推广应用的首要问题。针对机制砂混凝土配合比中的主要参数—砂率和水灰比,研究混凝土的工作性、抗压强度和耐磨性能,并提出适宜于耐磨性的混凝土配合比参数。  相似文献   

13.
对特细砂和机制砂进行掺配试验,研究考察特细砂的不同掺配比例对混合砂混凝土性能的影响,并与天然中砂混凝土进行比较分析。试验结果表明,特细砂与机制砂存在一个最佳比例范围,在此范围内混凝土性能达到最优。适量的特细砂比例的混合砂混凝土的工作性能指标接近天然中砂混凝土,且部分力学性能略优于天然中砂混凝土。混合砂配制混凝土完全能够满足施工技术要求,可以取代天然中砂。  相似文献   

14.
高强混凝土的强度对砂的要求比较严格苛刻,通过实验室试验,研究砂率对新拌高强混凝土工作性的影响以及对水泥用量的影响。运用控制变量法,通过改变砂率,研究砂率与坍落度、碎石粒径、水灰比以及水泥用量等因素的关系。研究结果表明:存在最佳砂率,使坍落度、碎石粒径、水泥用量等因素达到最佳状态。  相似文献   

15.
以含砂透水混凝土为研究对象,分析了砂率(0%、5%、10%、15%)对透水混凝土抗压强度、有效孔隙率、透水系数及耐酸雨性能的影响。结果表明:砂率在0~15%范围内时,随着砂率的增加,透水混凝土的抗压强度先增大后减小,有效孔隙率和透水系数先减小后增大;含砂透水混凝土在经受酸雨侵蚀时,其质量前期损失速率较快,而后期损失速率减缓,与普通混凝土中的规律相反;掺入少量细砂可以提高透水混凝土强度和抗酸雨侵蚀性能而不影响透水性能,建议透水混凝土最佳砂率为5%左右。  相似文献   

16.
鉴于机制砂与天然砂材料特性及在混凝土中应用的不同,对机制砂特性、生产工艺、质量标准,机制砂混凝土配合比设计,尤其是机制砂中石粉含量及特性对混凝土性能影响的研究应用现状进行了综述,对存在问题进行了分析。  相似文献   

17.
余胜伟 《湖南交通科技》2021,47(2):102-104,113
以研究机制砂混凝土耐久性能为基本出发点,进行机制砂混凝土早期开裂及抗水渗透性影响因素试验研究.将机制砂种类、石粉含量、矿物掺合量设为研究变量,通过控制单一变量研究变量变化对机制砂混凝土早期开裂、抗水渗透性能影响程度.试验研究表明:在机制砂混凝土中增大砂类的掺加量,混凝土的抗裂性能显著提高,天然砂混凝土的抗水渗透性强于机制砂混凝土;掺入石粉含量从0.5%增加至3.5%时,随着石粉含量增加,机制砂混凝土的早期抗开裂性能加强,但石粉含量从3.5%增加至7.5%时,机制砂混凝土的早期抗开裂性能反而弱化;同一种类机制砂混凝土,石粉含量越大,其抗渗等级越高;水洗机制砂相对于原状机制砂的抗渗等级明显较低;掺加粉煤灰矿物掺合料降低了混凝土的抗早期开裂性能;掺入矿物掺合料后,机制砂混凝土的抗水渗透等级显著高于未掺矿物掺合料的机制砂混凝土.  相似文献   

18.
针对在河砂中掺入一定比例的机制砂可以改善混凝土工作性能进行了试验分析,试验结果表明:当混凝土工作性能不能满足要求时,可掺入一定比例的机制砂以改善混凝土的工作性能,且其力学性能也能满足相关技术规范要求,并成功地运用到云南龙陵—瑞丽高速公路第6合同段桥梁工程中的重要结构部位,在满足质量要求的同时也产生了一定的经济效益。  相似文献   

19.
通过试验分析用水量对混凝土耐磨性的影响,结果表明,采用各种降低用水量的手段提高混凝土的表面硬度,都可以改善其耐磨性,但相比之下,使用较高掺量的减水剂会增大混凝土的含气量和粘性,导致其表面硬度降低,改善效果要劣于降低砂、石含泥量的方法。因此,建议在混凝土生产中,采用更为严格的技术手段来控制砂、石材料的质量。  相似文献   

20.
刘龙泉 《交通标准化》2014,(2):74-75,78
针对在河砂中掺入一定比例的机制砂可以改善混凝土工作性能进行了试验分析,试验结果表明:当混凝土工作性能不能满足要求时,可掺入一定比例的机制砂以改善混凝土的工作性能.且其力学性能也能满足相关技术规范要求,并成功地运用到云南龙陵一瑞丽高速公路第6合同段桥梁工程中的重要结构部位.在满足质量要求的同时也产生了一定的经济效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号