首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于江苏省公路中小跨径桥梁的特点,以双向六车道30 m跨径的钢混组合结构桥梁为研究背景,对钢混组合板梁桥的设计标准化关键参数进行分析。针对不同关键构造参数与尺寸的桥型建立有限元模型,以横向分布系数、桥面板横向承载力和钢主梁应力作为参数分析对比标准,研究其合理截面与合理构造。数值仿真结果表明:横向分布系数主要受主梁间距与悬臂长度影响,桥面板横向承载力主要受桥面板厚度、主梁间距、主梁高度影响,钢主梁应力主要受主梁间距、主梁高度影响。综合以上参数分析结果,桥面板厚度取0.25 m,主梁间距取3 m,悬臂长度取2.0 m,横梁间距取5 m,主梁高度1.65 m时为最优方案。  相似文献   

2.
为明确波形钢腹板工字钢-混凝土结合板梁桥关键设计参数的合理取值范围,以3×30 m波形钢腹板结合梁桥通用图为研究对象,建立波形钢腹板工字钢-混凝土结合板梁有限元模型进行参数敏感性分析。研究翼缘板宽厚比、波形钢腹板高厚比、横隔板间距及钢梁高跨比等对结构受力性能的影响,并给出关键设计参数合理取值建议。结果表明:波形钢腹板工字钢梁跨中处受压上翼缘板宽厚比小于23、支点处下翼缘板宽厚比小于19时可满足结构稳定性要求;跨中处波形钢腹板高厚比不宜大于265,支点处腹板厚度由抗剪需求控制;波形钢腹板横向刚度大于平钢板,横隔板间距可放宽至支点处翼缘板宽度的35倍;波形钢腹板工字钢结合板梁桥的钢梁高跨比可取1/28~1/18,经济合理高跨比约为1/25。  相似文献   

3.
为研究大跨度公铁两用斜拉桥板桁主梁整体受力性能和铁路桥面系局部受力性能,以(84+196+532+196+84)m平潭海峡公铁两用大桥主桥为背景进行分析。采用ANSYS建立全桥和不同节段长度主梁的三维板桁结构精细化有限元模型,对板桁主梁的整体刚度和桥面板局部刚度进行计算,并对比分析铁路桥面系构件参数(板桁连接方式、桥面板厚度、横梁刚度、纵梁及U肋厚度)对主梁刚度的影响。分析结果表明,板桁主梁中横梁位置处钢轨的竖向线刚度较大,两横梁之间竖向线刚度较小,钢轨的竖向线刚度沿纵向周期性波动。铁路桥面板厚度对桥梁整体扭转刚度影响明显,铁路桥面板局部刚度与横梁、纵梁和U肋密切相关。  相似文献   

4.
以商合杭铁路钢混叠合连续梁桥为背景,比较、分析高速铁路预顶升钢混叠合梁桥对钢板厚度、混凝土桥面板厚度和混凝土强度制造误差的敏感性。结果表明:钢板厚度的增加会引起顶升过程中最大负反力的增加;混凝土桥面板厚度误差基本不对成桥后的桥面板上缘预压应力产生影响;混凝土强度的增加可使成桥后桥面板上缘的预压应力增加,且这种影响在考虑收缩徐变后略有增强。  相似文献   

5.
目前,钢板组合宽梁桥中的横向联系布置数量趋于减少,为研究此种情形下宽桥的应力特别是荷载横向分布情况、并对比各荷载横向分布系数计算方法的适用性,以一座30 m简支钢板组合宽梁桥为背景,采用有限元法和国内外几种计算方法对其荷载横向分布系数进行计算,并选取桥面板厚度和钢横撑尺寸为参数进行对比分析。结果表明:中梁与边梁的荷载横向分布系数接近;相对于跨中不设横向联系,增设一道横向联系会略微增大边梁,减小中梁的荷载横向分布系数;桥面板厚度的影响很小;钢横撑的刚度并非越大越好,需根据实际情况选择;刚接梁法和AASHTO LRFD规范给出的计算方法较为可靠。  相似文献   

6.
为合理设置大跨组合斜拉桥钢板梁的腹板及其加劲肋,结合实例,在考虑后屈曲性能的影响下,对钢主梁受压区格长高比和加劲肋与腹板刚度比的合理选取进行研究。采用有限元软件EBPLATE计算腹板正应力屈曲系数、剪切屈曲系数及抗剪承载力,分析屈曲系数与钢主梁受压区格长高比和加劲肋与腹板刚度比的关系。结果表明:统筹考虑受压区纵肋布置及横肋的间距,受压区格长高比建议设计值区间为2.0~2.5,在这个区间纵肋的有效宽度大,局部正应力屈曲系数较大且剪切屈曲系数处于中值;在受压区,加劲肋与腹板刚度比建议设计值区间取13.0~15.0,在腹板厚度适中的情况下,使腹板成为中度加劲板。  相似文献   

7.
赤壁长江公路大桥主桥为跨度布置(90+240+720+240+90)m的双塔双索面斜拉桥,桥面全宽36.5m。主梁采用结构刚度大、抗风稳定性好、桥面铺装耐久性好的结合梁。对比双边工字钢、双边箱、开口箱及PK箱4种截面形式钢主梁的截面特性,最终采用受力满足要求且预应力施加效率较高的双边箱截面钢主梁。钢主梁底板既变宽又变厚。钢主梁连接采用栓焊混合的方式,其顶板采用焊接、腹板和底板采用栓接。混凝土桥面板标准段厚度采用26cm。边跨采用加厚桥面板的方式进行压重,边跨桥面板厚度采用59cm,桥面板厚度过渡位置设在次边跨距离辅助墩22m处。索梁锚固采用锚拉板形式,为提高主梁截面宽度利用率,将锚拉板布置于钢主梁外腹板正上方。  相似文献   

8.
该文针对大跨曲线结合梁弯扭耦合现象,首先建立全板壳单元模型,考虑混凝土板与钢梁之间水平滑移效应。然后分析和研究剪力连接件在各种荷载作用下剪力的分布规律,明确其受力特点。计算表明,对于单箱双室的主梁结构,中腹板剪力键承受的纵向水平力稍大于边腹板,横向水平力则主要由边腹板剪力键承担。最后分析了剪力键不同连接刚度对结构的影响。结果表明,连接刚度的改变,钢梁上翼缘的应力变化最大,其次是混凝土板应力,钢梁下翼缘的应力基本无影响。  相似文献   

9.
为保证悬拼施工时斜拉桥钢箱组合梁的精确匹配连接,以台州湾跨海大桥通航孔桥为背景,采用有限元法研究待安装梁段与已安装悬臂梁段在施工阶段荷载作用下的竖向变形和桥面板受力,并分析吊装节段长度、吊机位置及强制匹配措施对截面竖向变形与桥面板受力的影响。结果表明:由待安装梁段自重引起的吊机反力是导致匹配截面产生较大相对竖向变形的主要因素,两侧匹配截面均在边腹板附近的相对竖向变形差最大;斜拉索锚固区和桥面吊机处混凝土桥面板开裂风险较高;吊装节段长度对匹配截面局部变形的影响较小,但其长度增加会增大局部桥面板混凝土主拉应力;通过调整桥面吊机横向位置可减小匹配截面相对竖向变形差,且中腹板强制匹配较边腹板强制匹配对桥面板受力影响小,采用“边腹板吊装+中腹板强制匹配”施工方法可实现已安装悬臂梁段与待安装梁段的精确匹配。  相似文献   

10.
为研究波纹钢腹板-混凝土组合T梁桥与平钢腹板-混凝土组合T梁桥力学性能优劣,以某3跨钢-混组合连续T梁桥为背景,采用非线性有限元软件建立2种腹板(平钢腹板和波纹钢腹板)形式的全桥实体模型,分析二者在车辆偏载作用下桥梁的纵向弯曲、横向挠曲、刚性扭转及稳定性能,并进行对比。结果表明:与平钢腹板-混凝土组合T梁桥相比,波纹钢腹板-混凝土组合T梁桥抗弯刚度可提高10%,桥面板抗裂性可提高约20%,两者剪力滞系数接近;两者纯扭刚度相差不大,整体横向挠曲性能接近;波纹钢腹板-混凝土组合T梁桥扭转刚度略大,跨中最大转角约为平钢腹板-混凝土组合T梁桥的85%,腹板扭转附加剪应力不到平钢腹板-混凝土组合T梁桥的一半;波纹钢腹板-混凝土组合T梁桥的前5阶屈曲因子是平钢腹板-混凝土组合T梁桥的5~8倍,线弹性稳定性极大,且腹板无需额外设置加劲肋,经济优势较大。  相似文献   

11.
宜宾盐坪坝长江大桥为主跨480 m的混合梁斜拉桥,中跨为钢混组合梁、边跨为预应力混凝土梁,钢混结合段设置在索塔附近中跨侧10.5 m处,中跨桥面宽度为40 m,双向6车道。钢混组合梁由钢主纵梁、钢横梁、小纵梁、预制桥面板、现浇桥面板几部分构成。通过分析研究,钢混组合梁采用双钢箱梁+混凝土桥面板断面型式,外侧腹板处高度为3.5 m,桥轴线处高度为2.9 m;节段长度为10.5 m、11.1 m,合龙段长7 m,钢横梁间距为3.5 m、3.7 m;混凝土桥面板厚度为26 cm,索塔附近加厚至28 cm,腹板附近局部加厚至40 cm;索梁锚固采用钢锚箱,设置在钢箱梁内部。空间计算结果表明:钢主纵梁、混凝土桥面板、钢横梁的应力均控制在合理范围内;汽车荷载作用下,主梁竖向挠度最大值为-340 mm,刚度满足要求。  相似文献   

12.
新型钢板组合梁桥因为施工简便、受力明确并能充分利用钢和混凝土两种材料优势,在国外得到广泛应用,但在我国尚处于起步阶段。论文以一座在建钢板组合梁桥为工程背景,细致研究了该结构体系在考虑钢梁安装、桥面板吊装、湿接缝浇筑等全施工过程下,成桥状态以及运营状态下结构的受力行为与安全性能。研究表明,预制桥面板的钢板梁桥施工工序,钢梁的应力水平较低,但是桥面板的会出现较大拉应力;汽车荷载作用下钢梁应力和桥面板受力较为不利,桥面板会带裂缝工作,此外钢梁部分加劲板件和横隔梁存在优化前景,需要细致研究。研究成果可为新型钢板梁桥在我国的工程实践提供参考。  相似文献   

13.
为研究空间钢桁拱与预应力混凝土梁组合桥的力学性能,以广州市从化大桥为例,采用空间有限元分析软件对影响空间钢桁拱稳定性的主要控制因素以及拱与主梁抗弯刚度变化等对结构内力和位移的影响进行了参数分析。结果表明拱肋刚度对桥梁整体稳定性影响较大,横、斜撑刚度的影响不大;只有中间吊杆时,拱肋的稳定性较差;主梁刚度对桥梁受力影响较大;吊杆初始张拉力大小影响恒载作用下主梁和拱肋的受力状态。  相似文献   

14.
新型UHPC—大纵肋波折板正交异性桥面板取消了顶板与纵肋焊缝,减少了横隔板与纵肋焊缝,为改善正交异性钢桥面板控制部位的疲劳性能提供了一个有效新途径。然而,由于波折板与横隔板保留横向焊缝,其疲劳风险仍然可能存在,故针对纵肋与横隔板位置的关键疲劳细节,采用数值分析并结合热点应力法对各参数影响下的轮载应力幅和疲劳寿命进行评估验证。结果表明,新型组合桥面板的大纵肋波折钢板及横隔板的疲劳寿命主要受弧形切口顶应力幅控制,施工时应加强切口打磨质量,防止疲劳开裂。另外,UHPC板厚增大、横隔板间距减小以及横隔板厚度加大时,各疲劳细节应力幅均有减小趋势,但加大纵肋高度或填充混凝土补强纵肋后,其各疲劳细节应力幅增减趋势并不一致。通过合理参数设计可使得各疲劳细节应力幅趋势均匀,获得优异的抗疲劳性能。  相似文献   

15.
基于有限元软件ANSYS的优化模块,对移动模架主梁进行优化设计及参数研究。结果表明,当采用主梁分节段钢板变厚度设计及腹板开孔采用变高度圆端形开孔设计,既能减轻移动模架重量又可增加主梁的刚度,且主梁具有受力均匀合理、节约材料等优点。弥补了传统移动模架主梁分节段等厚度设计,腹板等高度方形开孔设计的不足。  相似文献   

16.
金杰  张君琳  李业  谢增奎  杨立坡 《公路》2023,(1):111-117
以聊城中华路大桥为例,采用midas总体计算和ANSYS细部分析的有限元联合分析方法对独塔混合梁斜拉桥的钢—UHPC结合段的受力开展了研究。首先采用midas civil分析软件建立全桥的总体杆系模型,以获得钢—混结合段控制截面在各种不利工况下的内力;然后在ANSYS中建立了结合段板壳—实体有限元精细化模型,将提取的内力施加于局部模型,计算得到钢—混结合段细部应力。通过受力分析发现,独塔斜拉桥采用钢—混结合段后,充分发挥了混凝土抗压和钢结构抗拉的材料优点,构造受力合理,实现了材料和结构刚度的平顺过渡,是一种合理的方案选择。通过细部应力分析发现,在钢格室与承压板连接处以及顶底板折角、腹板折角与填充混凝土的接触面处,易产生较大的应力集中,应对这些部位进行局部加劲或采用平滑倒角的方式加以避免。对结合段中腹板的厚度与承压板厚度的参数敏感性分析结果表明,增加中腹板厚度可适当降低中腹板的应力,但不能降低其他钢结构的高应力水平;而增加承压板的厚度可以显著降低钢结构的高应力水平。  相似文献   

17.
魏子阳 《公路》2023,(1):168-173
以某一大型波形钢腹板连续箱梁桥为依托,结合有限元分析软件对梁桥进行模态分析获得梁桥的基本动力参数,采用反应谱和时程分析法,分析梁桥在地震力作用下的应力和位移响应。研究结果表明:波形钢腹板梁桥基频为0.834 Hz,振型为对称竖弯,相较于混凝土腹板箱梁具有较好的竖向抗弯刚度和较小的扭转刚度。在EL-Centro波和天津地震波作用下,竖向地震力对波形钢腹板梁桥结构应力和位移影响最大,最大位移出现在中跨跨中位置,最大应力出现在0号块附近钢混连接处。两种分析法的位移和应力分布规律一致,其中反应谱法的应力大于时程分析法。  相似文献   

18.
针对成桥索力一定情况下,可能仍存在主梁局部应力较大的现象,再次调索较为繁琐,采用改变钢主梁截面参数对成桥状态组合梁受力敏感性进行分析,利用钢主梁参数调整的方法,局部优化主梁的应力,作为对其合理成桥状态计算方法的补充。主要研究内容如下:(1)建立BDCMS及Midas/Civil模型,在成桥索力一定的情况下,以不改变钢主梁的横截面积为前提,对刚成桥及混凝土收缩徐变完成两种状态下的钢主梁截面参数均进行研究分析。以赤壁长江公路大桥塔区五段梁为研究对象,调整塔区五段梁的钢主梁顶、底、腹板厚度,分析成桥状态下组合梁的受力性能;(2)针对成桥状态下Midas/Civil模型中塔区及辅助墩主梁下缘应力局部偏大,边墩桥面板上下缘拉应力较大的情况,采用钢主梁参数调整的方法进行局部优化。  相似文献   

19.
以丰台火车站东侧立交专用匝道宽幅异形钢板组合梁桥为研究对象,从结构优化和安全设计两方面对组合梁桥进行分析,以桥梁结构安全性与经济性为原则,提出最优设计方案。在有限元软件中,采取刚臂连接模拟剪力钉设置,结合混凝土桥面板和工字形钢主梁,建立全桥整体模型;通过调整中横梁设置个数、改变支座平面布置方式,优化桥梁结构设计;根据桥梁实际受力情况,分析桥梁结构在常态下钢主梁的刚度、承载能力、屈曲稳定和疲劳应力情况。结果表明:在满足结构使用安全的情况下,减少中横梁数量,会增加结构应力,降低稳定安全系数;宽幅异形钢板组合梁受混凝土收缩影响明显,外侧支座容易脱空,优化支座布置显得尤为重要;在正常使用状态下,钢板组合梁外侧主梁刚度较小,变形明显,应力较大,最早容易出现屈曲失稳,且受疲劳荷载影响较为敏感。  相似文献   

20.
为了研究桥面爆炸荷载作用下预应力混凝土连续T梁桥的抗爆性能,进行了2×8 m两跨预应力混凝土连续T梁桥模型的野外爆炸试验,并结合数值模拟的方法,研究了不同爆心位置和桥面爆炸荷载作用下预应力混凝土连续T梁桥的动力响应、破坏模式及损伤程度。研究结果表明:跨中桥面上方发生爆炸时,预应力混凝土连续T梁桥桥面破坏形态均表现为桥面板混凝土破碎开洞、T梁腹板和梁底混凝土崩落,属局部冲切破坏;中墩墩顶上方发生爆炸时,预应力混凝土连续T梁桥桥面未发生严重毁伤,邻近中支点的横隔板出现由顶部爆心轴线处向横隔板底放射形扩散的裂缝。相同药量和爆心高度下,桥面中梁跨中爆炸时中梁底加速度峰值最大,桥面边梁跨中爆炸时中梁底加速度峰值最小;提升混凝土强度、箍筋加密布置、施加预应力和增大宽跨比等能一定程度地提高主梁的抗爆性能;研究成果可供梁桥的抗爆防护设计参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号