首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper examines the dynamic user equilibrium of the morning commute problem in the presence of ridesharing program. Commuters simultaneously choose departure time from home and commute mode among three roles: solo driver, ridesharing driver, and ridesharing rider. Considering the congestion evolution over time, we propose a time-varying compensation scheme to maintain a positive ridesharing ridership at user equilibrium. To match the demand and the supply of ridesharing service over time, the compensation scheme should be set according to the inconvenience cost functions and the out-of-pocket cost functions. When the price charged per time unit is higher than the inconvenience cost per time unit perceived by the ridesharing drivers, the ridesharing participants will travel at the center of peak hours and solo drivers will commute at the two tails. Within the feasible region with positive ridership, the ridesharing program can reduce the congestion and all the commuters will be better off. To support system optimum (SO), we derive a time-varying toll combined with a flat ridesharing price from eliminating queuing delay. Under SO toll, the ridesharing program can attract more participants and have an enlarged feasible region. This reveals that the commuters are more tolerant to the inconvenience caused by sharing a ride at SO because of the lower travel time. Compared with no-toll equilibrium, both overall congestion and individual travel cost are further reduced at SO.  相似文献   

2.
The spread of GPS-based location services using smartphone applications has led to the rapid growth of new startups offering smartphone-enabled dispatch service for taxicabs, limousines, and ridesharing vehicles. This change in communicative technology has been accompanied by the creation of new categories of car service, particularly as drivers of limousines and private vehicles use the apps to provide on-demand service of a kind previously reserved for taxicabs. One of the most controversial new models of car service is for-profit ridesharing, which combines the for-profit model of taxi service with the overall traffic reduction goals of ridesharing. A preliminary attempt is here made at understanding how for-profit ridesharing compares to traditional taxicab and ridesharing models. Ethnographic interviews are drawn on to illustrate the range of motivations and strategies used by for-profit ridesharing drivers in San Francisco, California as they make use of the service. A range of driver strategies is identified, ranging from incidental, to part-time, to full-time driving. This makes possible a provisional account of the potential ecological impacts of the spread of this model of car service, based on the concept of taxicab efficiency, conceived as the ratio of shared versus unshared miles driven.  相似文献   

3.
The urban parking and the urban traffic systems are essential components of the overall urban transportation structure. The short-term interactions between these two systems can be highly significant and influential to their individual performance. The urban parking system, for example, can affect the searching-for-parking traffic, influencing not only overall travel speeds in the network (traffic performance), but also total driven distance (environmental conditions). In turn, the traffic performance can also affect the time drivers spend searching for parking, and ultimately, parking usage. In this study, we propose a methodology to model macroscopically such interactions and evaluate their effects on urban congestion.The model is built on a matrix describing how, over time, vehicles in an urban area transition from one parking-related state to another. With this model it is possible to estimate, based on the traffic and parking demand as well as the parking supply, the amount of vehicles searching for parking, the amount of vehicles driving on the network but not searching for parking, and the amount of vehicles parked at any given time. More importantly, it is also possible to estimate the total (or average) time spent and distance driven within each of these states. Based on that, the model can be used to design and evaluate different parking policies, to improve (or optimize) the performance of both systems.A simple numerical example is provided to show possible applications of this type. Parking policies such as increasing parking supply or shortening the maximum parking duration allowed (i.e., time controls) are tested, and their effects on traffic are estimated. The preliminary results show that time control policies can alleviate the parking-caused traffic issues without the need for providing additional parking facilities. Results also show that parking policies that intend to reduce traffic delay may, at the same time, increase the driven distance and cause negative externalities. Hence, caution must be exercised and multiple traffic metrics should be evaluated before selecting these policies.Overall, this paper shows how the system dynamics of urban traffic, based on its parking-related-states, can be used to efficiently evaluate the urban traffic and parking systems macroscopically. The proposed model can be used to estimate both, how parking availability can affect traffic performance (e.g., average time searching for parking, number of cars searching for parking); and how different traffic conditions (e.g., travel speed, density in the system) can affect drivers ability to find parking. Moreover, the proposed model can be used to study multiple strategies or scenarios for traffic operations and control, transportation planning, land use planning, or parking management and operations.  相似文献   

4.
This paper provides findings from a review of employer based demand management strategies for reducing traffic congestion in several areas of the United States. The research was carried out by K.T. Analytics, Inc. in 1989 under a contract with the Federal Department of Transportation, Transportation Systems Center. Relying on a review of employer based programs in 26 sites, as well as selected literature, the paper draws conclusions about the effectiveness of employer based transportation systems management (programs to encourage carpooling, transit, biking, cycling, walking and flextime) and parking management (preferential parking for carpoolers, removal of parking subsidies, and other measures) aimed at reducing solo driving and peak period commuting.Several conclusions are offered for local planners and policy makers. Demand Management programs can be effective in reducing traffic congestion, provided they are targeted to larger employment centers, accompanied by transit development, high occupancy vehicle incentives and parking management strategies, especially pricing. Flextime should not be encouraged without careful evaluation as it may discourage ridesharing. Guaranteed ride home services appear promising and deserve attention. With all strategies, long term vigilance will be necessary as programs are susceptible to change over time. Stringent public policies do not appear necessary for development of effective programs. Ordinances should require plans not specific strategies, as it is difficult estimating the probable effectiveness of particular strategies. Ordinances should contain sanctions for employers not carrying out agreed to plans, and should include fees and financing to support public sector review of plans and on-going monitoring.  相似文献   

5.
Nowadays, problems of congestion in urban areas due to the massive usage of cars, last-minute travel needs and progress in information and communication technologies have fostered the rise of new transportation modes such as ridesharing. In a ridesharing service, a car owner shares empty seats of his car with other travelers. Recent ridesharing approaches help to identify interesting meeting points to improve the efficiency of the ridesharing service (i.e., the best pick-up and drop-off points so that the travel cost is competitive for both driver and rider). In particular, ridesharing services, such as Blablacar or Carma, have become a good mobility alternative for users in their daily life. However, this success has come at the cost of user privacy. Indeed in current’s ridesharing services, users are not in control of their own data and have to trust the ridesharing operators with the management of their data.In this paper, we aim at developing a privacy-preserving service to compute meeting points in ridesharing, such that each user remains in control of his location data. More precisely, we propose a decentralized architecture that provides strong security and privacy guarantees without sacrificing the usability of ridesharing services. In particular, our approach protects the privacy of location data of users. Following the privacy-by-design principle, we have integrated existing privacy enhancing technologies and multimodal shortest path algorithms to privately compute mutually interesting meeting points for both drivers and riders in ridesharing. In addition, we have built a prototype implementation of the proposed approach. The experiments, conducted on a real transportation network, have demonstrated that it is possible to reach a trade-off in which both the privacy and utility levels are satisfactory.  相似文献   

6.
ABSTRACT

To reduce the traffic accident death rate effectively and alleviate the traffic congestion phenomenon, this study proposes a new type of car-following model under the influence of drivers’ time-varying delay response time. Based on Lyapunov function theory, this paper reduces the traffic accident rate problem to the stability issues of the new model. By constructing suitable Lyapunov functions and using the linear matrix inequality method, the stability problem of the new car-following model is studied. The model, under the action of the controller, can effectively restrain traffic congestion. Using the traffic accident rate model proposed by Solomon, compared with the car-following model without the controller, the model under the controller shows a stronger convergence. This also means that the traffic congestion phenomenon has been effectively suppressed while greatly reducing the mortality rate of traffic accidents.  相似文献   

7.
Congestion pricing is one of the widely contemplated methods to manage traffic congestion. The purpose of congestion pricing is to manage traffic demand generation and supply allocation by charging fees (i.e., tolling) for the use of certain roads in order to distribute traffic demand more evenly over time and space. This study presents a framework for large-scale variable congestion pricing policy determination and evaluation. The proposed framework integrates departure time choice and route choice models within a regional dynamic traffic assignment (DTA) simulation environment. The framework addresses the impact of tolling on: (1) road traffic congestion (supply side), and (2) travelers’ choice dimensions including departure time and route choices (demand side). The framework is applied to a simulation-based case study of tolling a major freeway in Toronto while capturing the regional effects across the Greater Toronto Area (GTA). The models are developed and calibrated using regional household travel survey data that reflect the heterogeneity of travelers’ attributes. The DTA model is calibrated using actual traffic counts from the Ontario Ministry of Transportation and the City of Toronto. The case study examined two tolling scenarios: flat and variable tolling. The results indicate that: (1) more benefits are attained from variable pricing, that mirrors temporal congestion patterns, due to departure time rescheduling as opposed to predominantly re-routing only in the case of flat tolling, (2) widespread spatial and temporal re-distributions of traffic demand are observed across the regional network in response to tolling a significant, yet relatively short, expressway serving Downtown Toronto, and (3) flat tolling causes major and counterproductive rerouting patterns during peak hours, which was observed to block access to the tolled facility itself.  相似文献   

8.
9.
This paper examines the impact of having cooperative adaptive cruise control (CACC) embedded vehicles on traffic flow characteristics of a multilane highway system. The study identifies how CACC vehicles affect the dynamics of traffic flow on a complex network and reduce traffic congestion resulting from the acceleration/deceleration of the operating vehicles. An agent-based microscopic traffic simulation model (Flexible Agent-based Simulator of Traffic) is designed specifically to examine the impact of these intelligent vehicles on traffic flow. The flow rate of cars, the travel time spent, and other metrics indicating the evolution of traffic congestion throughout the lifecycle of the model are analyzed. Different CACC penetration levels are studied. The results indicate a better traffic flow performance and higher capacity in the case of CACC penetration compared to the scenario without CACC-embedded vehicles.  相似文献   

10.
Traffic control is an effective and efficient method for the problem of traffic congestion. It is necessary to design a high‐level controller to regulate the network traffic demands, because traffic congestion is not only caused by the improper management of the traffic network but also to a great extent caused by excessive network traffic demands. Therefore, we design a demand‐balance model predictive controller based on the macroscopic fundamental diagram‐based multi‐subnetwork model, which can optimize the network traffic mobility and the network traffic throughput by regulating the input traffic flows of the subnetworks. Because the transferring traffic flows among subnetworks are indirectly controlled and coordinated by the demand‐balance model predictive controller, the subnetwork division can variate dynamically according to real traffic states, and a global optimality can be achieved for the entire traffic network. The simulation results show the effectiveness of the proposed controller in improving the network traffic throughput. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Dynamic traffic routing refers to the process of (re)directing vehicles at junctions in a traffic network according to the evolving traffic conditions. The traffic management center can determine desired routes for drivers in order to optimize the performance of the traffic network by dynamic traffic routing. However, a traffic network may have thousands of links and nodes, resulting in a large-scale and computationally complex non-linear, non-convex optimization problem. To solve this problem, Ant Colony Optimization (ACO) is chosen as the optimization method in this paper because of its powerful optimization heuristic for combinatorial optimization problems. ACO is implemented online to determine the control signal – i.e., the splitting rates at each node. However, using standard ACO for traffic routing is characterized by four main disadvantages: 1. traffic flows for different origins and destinations cannot be distinguished; 2. all ants may converge to one route, causing congestion; 3. constraints cannot be taken into account; and 4. neither can dynamic link costs. These problems are addressed by adopting a novel ACO algorithm with stench pheromone and with colored ants, called Ant Colony Routing (ACR). Using the stench pheromone, the ACR algorithm can distribute the vehicles over the traffic network with less or no traffic congestion, as well as reduce the number of vehicles near some sensitive zones, such as hospitals and schools. With colored ants, the traffic flows for multiple origins and destinations can be represented. The proposed approach is also implemented in a simulation-based case study in the Walcheren area, the Netherlands, illustrating the effectiveness of the approach.  相似文献   

12.
Although ridesharing can provide a wealth of benefits, such as reduced travel costs, congestion, and consequently less pollution, there are a number of challenges that have restricted its widespread adoption. In fact, even at a time when improving communication systems provide real-time detailed information that could be used to facilitate ridesharing, the share of work trips that use ridesharing has decreased by almost 10% in the past 30 years.In this paper we present a classification to understand the key aspects of existing ridesharing systems. The objective is to present a framework that can help identify key challenges in the widespread use of ridesharing and thus foster the development of effective formal ridesharing mechanisms that would overcome these challenges and promote massification.  相似文献   

13.
Since the late 1990s, numerous ridematching programmes have integrated the Internet, mobile phones, and social networking into their services. Online ridematching systems are employing a range of new strategies to create “critical mass”: (1) regional and large employer partnerships, (2) financial incentives, (3) social networking to younger populations, and (4) real-time ridematching services that employ “smartphones” and automated ridematching software. Enhanced casual carpooling approaches, which focus on “meeting places”, are also being explored. Today, ridesharing represents approximately 8–11% of the transportation modal share in Canada and the USA, respectively. There are approximately 638 ridematching programmes in North America. Ridesharing's evolution can be categorized into five phases: (1) World War II car-sharing (or carpooling) clubs; (2) major responses to the 1970s energy crises; (3) early organized ridesharing schemes; (4) reliable ridesharing systems; and (5) technology-enabled ridematching. While ridesharing's future growth and direction are uncertain, the next decade is likely to include greater interoperability among services, technology integration, and stronger policy support. In light of growing concerns about climate change, congestion, and oil dependency, more research is needed to better understand ridesharing's impacts on infrastructure, congestion, and energy/emissions.  相似文献   

14.
Pricing is considered an effective management policy to reduce traffic congestion in transportation networks. In this paper we combine a macroscopic model of traffic congestion in urban networks with an agent-based simulator to study congestion pricing schemes. The macroscopic model, which has been tested with real data in previous studies, represents an accurate and robust approach to model the dynamics of congestion. The agent-based simulator can reproduce the complexity of travel behavior in terms of travelers’ choices and heterogeneity. This integrated approach is superior to traditional pricing schemes. On one hand, traffic simulators (including car-following, lane-changing and route choice models) consider travel behavior, i.e. departure time choice, inelastic to the level of congestion. On the other hand, most congestion pricing models utilize supply models insensitive to demand fluctuations and non-stationary conditions. This is not consistent with the physics of traffic and the dynamics of congestion. Furthermore, works that integrate the above features in pricing models are assuming deterministic and homogeneous population characteristics. In this paper, we first demonstrate by case studies in Zurich urban road network, that the output of a agent-based simulator is consistent with the physics of traffic flow dynamics, as defined by a Macroscopic Fundamental Diagram (MFD). We then develop and apply a dynamic cordon-based congestion pricing scheme, in which tolls are controlled by an MFD. And we investigate the effectiveness of the proposed pricing scheme. Results show that by applying such a congestion pricing, (i) the savings of travel time at both aggregated and disaggregated level outweigh the costs of tolling, (ii) the congestion inside the cordon area is eased while no extra congestion is generated in the neighbor area outside the cordon, (iii) tolling has stronger impact on leisure-related activities than on work-related activities, as fewer agents who perform work-related activities changed their time plans. Future work can apply the same methodology to other network-based pricing schemes, such as area-based or distance-traveled-based pricing. Equity issues can be investigated more carefully, if provided with data such as income of agents. Value-of-time-dependent pricing schemes then can also be determined.  相似文献   

15.
This paper extends the discussion of certain problems associated with road pricing raised in an earlier contribution to this journal. Firstly it is shown that where the value of time varies between different groups of traffic using the same congested road, optimal road pricing requires price discrimination between the groups such that those with the lowest value of time pay the highest charge and suffer the greatest losses. However, a uniform price based on an “equity” value of time would reduce the relative distributional effects. Secondly the paper takes up the suggestion that queueing (and by extension congestion) may be positively helpful in the allocation of resources and shows that this is not in general correct although there are situations in which the use of queueing alongside conventional pricing may have a role to play. Finally it is argued that governments’ apparent lack of enthusiasm for road pricing stems as much from political considerations as the more technical problems of applying it.  相似文献   

16.
ABSTRACT

Transit-oriented development (TOD) is a popular planning strategy used to maximize accessibility to transit for various trip purposes. The quantitative effects of TOD on travel mode shift and traffic congestion have not been extensively tested in the current literature. This paper utilizes a seemingly unrelated regressions (SUR) mode share model and a mesoscopic dynamic traffic assignment (DTA) model to analyze the impact of a planned TOD in Maryland. The proposed model aims at improving the understanding of the quantitative impacts of such a TOD on mode share and traffic congestion. The main result of the mode share model indicates that the increase in transit ridership for a transit accessible shopping center is not that significant. Local traffic conditions will deteriorate due to a lack of investment in road infrastructure planned for the TOD area. The proposed method could be a valuable tool for other indicative land development or transportation policy analyses.  相似文献   

17.
ABSTRACT

Incidents are a major source of traffic congestion and can lead to long and unpredictable delays, deteriorating traffic operations and adverse environmental impacts. The emergence of connected vehicles and communication technologies has enabled travelers to use real-time traffic information. The ability to exchange traffic information among vehicles has tremendous potential impacts on network performance especially in the case of non-recurrent congestion. To this end, this paper utilizes a microscopic simulation model of traffic in El Paso, Texas to investigate the impacts of incidents on traffic operation and fuel consumption at different market penetration rates (MPR) of connected vehicles. Several scenarios are implemented and tested to determine the impacts of incidents on network performance in an urban area. The scenarios are defined by changing the duration of incidents and the number of lanes closed. This study also shows how communication technology affects network performance in response to congestion. The results of the study demonstrate the potential effectiveness of connected vehicle technology in improving network performance. For an incident with a duration of 900?s and MPR of 80%, total fuel consumption and total travel time decreased by approximately 20%; 26% was observed in network-wide travel time and fuel consumption at 100% MPR.  相似文献   

18.
Growing concerns regarding urban congestion, and the recent explosion of mobile devices able to provide real-time information to traffic users have motivated increasing reliance on real-time route guidance for the online management of traffic networks. However, while the theory of traffic equilibria is very well-known, fewer results exist on the stability of such equilibria, especially in the context of adaptive routing policy. In this work, we consider the problem of characterizing the stability properties of traffic equilibria in the context of online adaptive route choice induced by GPS-based decision making. We first extend the recent framework of “Markovian Traffic Equilibria” (MTE), in which users update their route choice at each intersection of the road network based on traffic conditions, to the case of non-equilibrium conditions, while preserving consistency with known existence and uniqueness results on MTE. We then exhibit sufficient conditions on the network topology and the latency functions for those MTEs to be stable in the sense of Lyapunov for a single destination problem. For various more restricted classes of network topologies motivated by the observed properties of travel patterns in the Singapore network, under certain assumptions we prove local exponential stability of the MTE, and derive analytical results on the sensitivity of the characteristic time of convergence to network and traffic parameters. The results proposed in this work are illustrated and validated on synthetic toy problems as well as on the Singapore road network with real demand and traffic data.  相似文献   

19.
Yield control and full signalization are typical traffic control solutions that can be used at large roundabouts. In the face of increasing congestion issues, it is preferred to use yield control during off‐peak periods and full signalization during peak periods. To automatically accommodate time‐varying vehicular demands, a multi‐level traffic control (MTC) is developed to implement hybrid yield control and fully actuated control at large four‐leg roundabouts. With new application of traffic control devices and traffic detection system, the right‐of‐way can be assigned to entering and circulating vehicles in three modes. The ‘all entering’ mode is equivalent to a yield control. The ‘no entering’ and ‘concurrent entering’ modes are equivalent to a fully actuated control. On the basis of time headways and occupancy times that are detected on the entry and circulatory roadways, the mode of right‐of‐way assignment can be changed in response to actual traffic conditions. For a specific mode of right‐of‐way assignment, traffic signal operation is managed by some detectable traffic events that are happening. The results of the simulation experiments conducted by VISSIM indicated that: (i) MTC was stabilized at the ‘all entering’ mode during off‐peak periods and at the ‘concurrent entering’ mode during peak periods; (ii) MTC would typically change the mode of right‐of‐way assignment according to actual traffic conditions as vehicular demands increased from off‐peak to peak or decreased from peak to off‐peak; and (iii) statistically speaking, MTC inherited the operational advantages of yield control and fully actuated control, and could be effective in improving the operational performance of large four‐leg roundabouts for all hours of the day, regardless of the level of left‐turn ratios. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The transportation demand is rapidly growing in metropolises, resulting in chronic traffic congestions in dense downtown areas. Adaptive traffic signal control as the principle part of intelligent transportation systems has a primary role to effectively reduce traffic congestion by making a real-time adaptation in response to the changing traffic network dynamics. Reinforcement learning (RL) is an effective approach in machine learning that has been applied for designing adaptive traffic signal controllers. One of the most efficient and robust type of RL algorithms are continuous state actor-critic algorithms that have the advantage of fast learning and the ability to generalize to new and unseen traffic conditions. These algorithms are utilized in this paper to design adaptive traffic signal controllers called actor-critic adaptive traffic signal controllers (A-CATs controllers).The contribution of the present work rests on the integration of three threads: (a) showing performance comparisons of both discrete and continuous A-CATs controllers in a traffic network with recurring congestion (24-h traffic demand) in the upper downtown core of Tehran city, (b) analyzing the effects of different traffic disruptions including opportunistic pedestrians crossing, parking lane, non-recurring congestion, and different levels of sensor noise on the performance of A-CATS controllers, and (c) comparing the performance of different function approximators (tile coding and radial basis function) on the learning of A-CATs controllers. To this end, first an agent-based traffic simulation of the study area is carried out. Then six different scenarios are conducted to find the best A-CATs controller that is robust enough against different traffic disruptions. We observe that the A-CATs controller based on radial basis function networks (RBF (5)) outperforms others. This controller is benchmarked against controllers of discrete state Q-learning, Bayesian Q-learning, fixed time and actuated controllers; and the results reveal that it consistently outperforms them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号